File size: 26,915 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
from typing import Optional, Tuple

import torch
import torch.nn as nn
from ding.torch_utils import MLP
from ding.utils import MODEL_REGISTRY, SequenceType
from numpy import ndarray

from .common import EZNetworkOutput, RepresentationNetworkMLP, PredictionNetworkMLP
from .utils import renormalize, get_params_mean, get_dynamic_mean, get_reward_mean


@MODEL_REGISTRY.register('EfficientZeroModelMLP')
class EfficientZeroModelMLP(nn.Module):

    def __init__(
        self,
        observation_shape: int = 2,
        action_space_size: int = 6,
        lstm_hidden_size: int = 512,
        latent_state_dim: int = 256,
        fc_reward_layers: SequenceType = [32],
        fc_value_layers: SequenceType = [32],
        fc_policy_layers: SequenceType = [32],
        reward_support_size: int = 601,
        value_support_size: int = 601,
        proj_hid: int = 1024,
        proj_out: int = 1024,
        pred_hid: int = 512,
        pred_out: int = 1024,
        self_supervised_learning_loss: bool = True,
        categorical_distribution: bool = True,
        last_linear_layer_init_zero: bool = True,
        state_norm: bool = False,
        activation: Optional[nn.Module] = nn.ReLU(inplace=True),
        norm_type: Optional[str] = 'BN',
        discrete_action_encoding_type: str = 'one_hot',
        res_connection_in_dynamics: bool = False,
        *args,
        **kwargs,
    ):
        """
        Overview:
            The definition of the network model of EfficientZero, which is a generalization version for 1D vector obs.
            The networks are mainly built on fully connected layers.
            Sampled EfficientZero model consists of a representation network, a dynamics network and a prediction network.
            The representation network is an MLP network which maps the raw observation to a latent state.
            The dynamics network is an MLP+LSTM network which predicts the next latent state, reward_hidden_state and value_prefix given the current latent state and action.
            The prediction network is an MLP network which predicts the value and policy given the current latent state.
        Arguments:
            - observation_shape (:obj:`int`): Observation space shape, e.g. 8 for Lunarlander.
            - action_space_size: (:obj:`int`): Action space size, e.g. 4 for Lunarlander.
            - lstm_hidden_size (:obj:`int`): The hidden size of LSTM in dynamics network to predict value_prefix.
            - latent_state_dim (:obj:`int`): The dimension of latent state, such as 256.
            - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
            - fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
            - fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
            - reward_support_size (:obj:`int`): The size of categorical reward output
            - value_support_size (:obj:`int`): The size of categorical value output.
            - proj_hid (:obj:`int`): The size of projection hidden layer.
            - proj_out (:obj:`int`): The size of projection output layer.
            - pred_hid (:obj:`int`): The size of prediction hidden layer.
            - pred_out (:obj:`int`): The size of prediction output layer.
            - self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in Sampled EfficientZero model, default set it to False.
            - categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution for value, reward/value_prefix.
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of value/policy mlp, default sets it to True.
            - state_norm (:obj:`bool`): Whether to use normalization for latent states, default sets it to True.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - discrete_action_encoding_type (:obj:`str`): The type of encoding for discrete action. Default sets it to 'one_hot'. options = {'one_hot', 'not_one_hot'}
            - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'.
            - res_connection_in_dynamics (:obj:`bool`): Whether to use residual connection for dynamics network, default set it to False.
        """
        super(EfficientZeroModelMLP, self).__init__()
        if not categorical_distribution:
            self.reward_support_size = 1
            self.value_support_size = 1
        else:
            self.reward_support_size = reward_support_size
            self.value_support_size = value_support_size

        self.action_space_size = action_space_size
        self.continuous_action_space = False
        # The dim of action space. For discrete action space, it is 1.
        # For continuous action space, it is the dimension of continuous action.
        self.action_space_dim = action_space_size if self.continuous_action_space else 1
        assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type
        self.discrete_action_encoding_type = discrete_action_encoding_type
        if self.continuous_action_space:
            self.action_encoding_dim = action_space_size
        else:
            if self.discrete_action_encoding_type == 'one_hot':
                self.action_encoding_dim = action_space_size
            elif self.discrete_action_encoding_type == 'not_one_hot':
                self.action_encoding_dim = 1

        self.lstm_hidden_size = lstm_hidden_size
        self.proj_hid = proj_hid
        self.proj_out = proj_out
        self.pred_hid = pred_hid
        self.pred_out = pred_out
        self.self_supervised_learning_loss = self_supervised_learning_loss
        self.last_linear_layer_init_zero = last_linear_layer_init_zero
        self.state_norm = state_norm
        self.res_connection_in_dynamics = res_connection_in_dynamics

        self.representation_network = RepresentationNetworkMLP(
            observation_shape=observation_shape, hidden_channels=latent_state_dim, norm_type=norm_type
        )

        self.dynamics_network = DynamicsNetworkMLP(
            action_encoding_dim=self.action_encoding_dim,
            num_channels=latent_state_dim + self.action_encoding_dim,
            common_layer_num=2,
            lstm_hidden_size=lstm_hidden_size,
            fc_reward_layers=fc_reward_layers,
            output_support_size=self.reward_support_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            norm_type=norm_type,
            res_connection_in_dynamics=self.res_connection_in_dynamics,
        )

        self.prediction_network = PredictionNetworkMLP(
            action_space_size=action_space_size,
            num_channels=latent_state_dim,
            fc_value_layers=fc_value_layers,
            fc_policy_layers=fc_policy_layers,
            output_support_size=self.value_support_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            norm_type=norm_type
        )

        if self.self_supervised_learning_loss:
            # self_supervised_learning_loss related network proposed in EfficientZero
            self.projection_input_dim = latent_state_dim

            self.projection = nn.Sequential(
                nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out)
            )
            self.prediction_head = nn.Sequential(
                nn.Linear(self.proj_out, self.pred_hid),
                nn.BatchNorm1d(self.pred_hid),
                activation,
                nn.Linear(self.pred_hid, self.pred_out),
            )

    def initial_inference(self, obs: torch.Tensor) -> EZNetworkOutput:
        """
        Overview:
            Initial inference of EfficientZero model, which is the first step of the EfficientZero model.
            To perform the initial inference, we first use the representation network to obtain the "latent_state" of the observation.
            Then we use the prediction network to predict the "value" and "policy_logits" of the "latent_state", and
            also prepare the zeros-like ``reward_hidden_state`` for the next step of the EfficientZero model.
        Arguments:
            - obs (:obj:`torch.Tensor`): The 1D vector observation data.
        Returns (EZNetworkOutput):
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. \
                In initial inference, we set it to zero vector.
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The hidden state of LSTM about reward. In initial inference, \
                we set it to the zeros-like hidden state (H and C).
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, obs_shape)`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
            - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size.
        """
        batch_size = obs.size(0)
        latent_state = self._representation(obs)
        policy_logits, value = self._prediction(latent_state)
        # zero initialization for reward hidden states
        # (hn, cn), each element shape is (layer_num=1, batch_size, lstm_hidden_size)
        reward_hidden_state = (
            torch.zeros(1, batch_size,
                        self.lstm_hidden_size).to(obs.device), torch.zeros(1, batch_size,
                                                                           self.lstm_hidden_size).to(obs.device)
        )
        return EZNetworkOutput(value, [0. for _ in range(batch_size)], policy_logits, latent_state, reward_hidden_state)

    def recurrent_inference(
            self, latent_state: torch.Tensor, reward_hidden_state: torch.Tensor, action: torch.Tensor
    ) -> EZNetworkOutput:
        """
        Overview:
            Recurrent inference of EfficientZero model, which is the rollout step of the EfficientZero model.
            To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``,
            ``reward_hidden_state``, ``value_prefix`` by the given current ``latent_state`` and ``action``.
             We then use the prediction network to predict the ``value`` and ``policy_logits``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns (EZNetworkOutput):
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state.
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - next_latent_state (:obj:`torch.Tensor`): The predicted next latent state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward.
        Shapes:
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
            - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size.
        """
        next_latent_state, reward_hidden_state, value_prefix = self._dynamics(latent_state, reward_hidden_state, action)
        policy_logits, value = self._prediction(next_latent_state)
        return EZNetworkOutput(value, value_prefix, policy_logits, next_latent_state, reward_hidden_state)

    def _representation(self, observation: torch.Tensor) -> Tuple[torch.Tensor]:
        """
         Overview:
             Use the representation network to encode the observations into latent state.
         Arguments:
             - obs (:obj:`torch.Tensor`): The 1D vector  observation data.
         Returns:
             - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
         Shapes:
             - obs (:obj:`torch.Tensor`): :math:`(B, obs_shape)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
         """
        latent_state = self.representation_network(observation)
        if self.state_norm:
            latent_state = renormalize(latent_state)
        return latent_state

    def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor]:
        """
        Overview:
            Use the representation network to encode the observations into latent state.
        Arguments:
            - obs (:obj:`torch.Tensor`): The 1D vector observation data.
        Returns:
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
        """
        policy_logits, value = self.prediction_network(latent_state)
        return policy_logits, value

    def _dynamics(self, latent_state: torch.Tensor, reward_hidden_state: Tuple,
                  action: torch.Tensor) -> Tuple[torch.Tensor, Tuple[torch.Tensor], torch.Tensor]:
        """
        Overview:
            Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state``
            ``value_prefix`` and ``next_reward_hidden_state``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns:
            - next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
            - next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
        """
        # NOTE: the discrete action encoding type is important for some environments

        # discrete action space
        if self.discrete_action_encoding_type == 'one_hot':
            # Stack latent_state with the one hot encoded action
            if len(action.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action = action.unsqueeze(-1)

            # transform action to one-hot encoding.
            # action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4)
            action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device)
            # transform action to torch.int64
            action = action.long()
            action_one_hot.scatter_(1, action, 1)
            action_encoding = action_one_hot
        elif self.discrete_action_encoding_type == 'not_one_hot':
            action_encoding = action / self.action_space_size
            if len(action_encoding.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action_encoding = action_encoding.unsqueeze(-1)

        action_encoding = action_encoding.to(latent_state.device).float()
        # state_action_encoding shape: (batch_size, latent_state[1] + action_dim]) or
        # (batch_size, latent_state[1] + action_space_size]) depending on the discrete_action_encoding_type.
        state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)

        # NOTE: the key difference with MuZero
        next_latent_state, next_reward_hidden_state, value_prefix = self.dynamics_network(
            state_action_encoding, reward_hidden_state
        )

        if self.state_norm:
            next_latent_state = renormalize(next_latent_state)
        return next_latent_state, next_reward_hidden_state, value_prefix

    def project(self, latent_state: torch.Tensor, with_grad=True):
        """
        Overview:
            Project the latent state to a lower dimension to calculate the self-supervised loss, which is proposed in EfficientZero.
            For more details, please refer to the paper ``Exploring Simple Siamese Representation Learning``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - with_grad (:obj:`bool`): Whether to calculate gradient for the projection result.
        Returns:
            - proj (:obj:`torch.Tensor`): The result embedding vector of projection operation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size.

        Examples:
            >>> latent_state = torch.randn(256, 64)
            >>> output = self.project(latent_state)
            >>> output.shape # (256, 1024)
         """
        proj = self.projection(latent_state)

        if with_grad:
            # with grad, use prediction_head
            return self.prediction_head(proj)
        else:
            return proj.detach()

    def get_params_mean(self) -> float:
        return get_params_mean(self)


class DynamicsNetworkMLP(nn.Module):

    def __init__(
        self,
        action_encoding_dim: int = 2,
        num_channels: int = 64,
        common_layer_num: int = 2,
        fc_reward_layers: SequenceType = [32],
        output_support_size: int = 601,
        lstm_hidden_size: int = 512,
        last_linear_layer_init_zero: bool = True,
        activation: Optional[nn.Module] = nn.ReLU(inplace=True),
        norm_type: Optional[str] = 'BN',
        res_connection_in_dynamics: bool = False,
    ):
        """
        Overview:
            The definition of dynamics network in EfficientZero algorithm, which is used to predict next latent state
            value_prefix and reward_hidden_state by the given current latent state and action.
            The networks are mainly built on fully connected layers.
        Arguments:
            - action_encoding_dim (:obj:`int`): The dimension of action encoding.
            - num_channels (:obj:`int`): The num of channels in latent states.
            - common_layer_num (:obj:`int`): The number of common layers in dynamics network.
            - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
            - output_support_size (:obj:`int`): The size of categorical reward output.
            - lstm_hidden_size (:obj:`int`): The hidden size of lstm in dynamics network.
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of value/policy head, default sets it to True.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'.
            - res_connection_in_dynamics (:obj:`bool`): Whether to use residual connection in dynamics network.
        """
        super().__init__()
        assert num_channels > action_encoding_dim, f'num_channels:{num_channels} <= action_encoding_dim:{action_encoding_dim}'

        self.num_channels = num_channels
        self.action_encoding_dim = action_encoding_dim
        self.latent_state_dim = self.num_channels - self.action_encoding_dim
        self.lstm_hidden_size = lstm_hidden_size
        self.activation = activation
        self.res_connection_in_dynamics = res_connection_in_dynamics

        if self.res_connection_in_dynamics:
            self.fc_dynamics_1 = MLP(
                in_channels=self.num_channels,
                hidden_channels=self.latent_state_dim,
                layer_num=common_layer_num,
                out_channels=self.latent_state_dim,
                activation=activation,
                norm_type=norm_type,
                output_activation=True,
                output_norm=True,
                # last_linear_layer_init_zero=False is important for convergence
                last_linear_layer_init_zero=False,
            )
            self.fc_dynamics_2 = MLP(
                in_channels=self.latent_state_dim,
                hidden_channels=self.latent_state_dim,
                layer_num=common_layer_num,
                out_channels=self.latent_state_dim,
                activation=activation,
                norm_type=norm_type,
                output_activation=True,
                output_norm=True,
                # last_linear_layer_init_zero=False is important for convergence
                last_linear_layer_init_zero=False,
            )
        else:
            self.fc_dynamics = MLP(
                in_channels=self.num_channels,
                hidden_channels=self.latent_state_dim,
                layer_num=common_layer_num,
                out_channels=self.latent_state_dim,
                activation=activation,
                norm_type=norm_type,
                output_activation=True,
                output_norm=True,
                # last_linear_layer_init_zero=False is important for convergence
                last_linear_layer_init_zero=False,
            )

        # input_shape: (sequence_length,batch_size,input_size)
        # output_shape: (sequence_length, batch_size, hidden_size)
        self.lstm = nn.LSTM(input_size=self.latent_state_dim, hidden_size=self.lstm_hidden_size)

        self.fc_reward_head = MLP(
            in_channels=self.lstm_hidden_size,
            hidden_channels=fc_reward_layers[0],
            layer_num=2,
            out_channels=output_support_size,
            activation=self.activation,
            norm_type=norm_type,
            output_activation=False,
            output_norm=False,
            last_linear_layer_init_zero=last_linear_layer_init_zero
        )

    def forward(self, state_action_encoding: torch.Tensor, reward_hidden_state):
        """
        Overview:
            Forward computation of the dynamics network. Predict next latent state given current state_action_encoding and reward hidden state.
        Arguments:
            - state_action_encoding (:obj:`torch.Tensor`): The state-action encoding, which is the concatenation of \
                    latent state and action encoding, with shape (batch_size, num_channels, height, width).
            - reward_hidden_state (:obj:`Tuple[torch.Tensor, torch.Tensor]`): The input hidden state of LSTM about reward.
        Returns:
            - next_latent_state (:obj:`torch.Tensor`): The next latent state, with shape (batch_size, latent_state_dim).
            - next_reward_hidden_state (:obj:`torch.Tensor`): The input hidden state of LSTM about reward.
            - value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state.
        """
        if self.res_connection_in_dynamics:
            # take the state encoding (latent_state), state_action_encoding[:, -self.action_encoding_dim]
            # is action encoding
            latent_state = state_action_encoding[:, :-self.action_encoding_dim]
            x = self.fc_dynamics_1(state_action_encoding)
            # the residual link: add state encoding to the state_action encoding
            next_latent_state = x + latent_state
            next_latent_state_ = self.fc_dynamics_2(next_latent_state)
        else:
            next_latent_state = self.fc_dynamics(state_action_encoding)
            next_latent_state_ = next_latent_state

        next_latent_state_unsqueeze = next_latent_state_.unsqueeze(0)
        value_prefix, next_reward_hidden_state = self.lstm(next_latent_state_unsqueeze, reward_hidden_state)
        value_prefix = self.fc_reward_head(value_prefix.squeeze(0))

        return next_latent_state, next_reward_hidden_state, value_prefix

    def get_dynamic_mean(self) -> float:
        return get_dynamic_mean(self)

    def get_reward_mean(self) -> Tuple[ndarray, float]:
        return get_reward_mean(self)