File size: 28,672 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
"""
Overview:
    BTW, users can refer to the unittest of these model templates to learn how to use them.
"""
from typing import Optional, Tuple

import math
import torch
import torch.nn as nn
from ding.torch_utils import MLP, ResBlock
from ding.utils import MODEL_REGISTRY, SequenceType
from numpy import ndarray

from .common import MZNetworkOutput, RepresentationNetwork, PredictionNetwork
from .utils import renormalize, get_params_mean, get_dynamic_mean, get_reward_mean


# use ModelRegistry to register the model, for more details about ModelRegistry, please refer to DI-engine's document.
@MODEL_REGISTRY.register('MuZeroModel')
class MuZeroModel(nn.Module):

    def __init__(
        self,
        observation_shape: SequenceType = (12, 96, 96),
        action_space_size: int = 6,
        num_res_blocks: int = 1,
        num_channels: int = 64,
        reward_head_channels: int = 16,
        value_head_channels: int = 16,
        policy_head_channels: int = 16,
        fc_reward_layers: SequenceType = [32],
        fc_value_layers: SequenceType = [32],
        fc_policy_layers: SequenceType = [32],
        reward_support_size: int = 601,
        value_support_size: int = 601,
        proj_hid: int = 1024,
        proj_out: int = 1024,
        pred_hid: int = 512,
        pred_out: int = 1024,
        self_supervised_learning_loss: bool = False,
        categorical_distribution: bool = True,
        activation: nn.Module = nn.ReLU(inplace=True),
        last_linear_layer_init_zero: bool = True,
        state_norm: bool = False,
        downsample: bool = False,
        norm_type: Optional[str] = 'BN',
        discrete_action_encoding_type: str = 'one_hot',
        *args,
        **kwargs
    ):
        """
        Overview:
            The definition of the neural network model used in MuZero.
            MuZero model which consists of a representation network, a dynamics network and a prediction network.
            The networks are built on convolution residual blocks and fully connected layers.
        Arguments:
            - observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[12, 96, 96] for Atari.
            - action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space.
            - num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
            - num_channels (:obj:`int`): The channels of hidden states.
            - reward_head_channels (:obj:`int`): The channels of reward head.
            - value_head_channels (:obj:`int`): The channels of value head.
            - policy_head_channels (:obj:`int`): The channels of policy head.
            - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
            - fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
            - fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
            - reward_support_size (:obj:`int`): The size of categorical reward output
            - value_support_size (:obj:`int`): The size of categorical value output.
            - proj_hid (:obj:`int`): The size of projection hidden layer.
            - proj_out (:obj:`int`): The size of projection output layer.
            - pred_hid (:obj:`int`): The size of prediction hidden layer.
            - pred_out (:obj:`int`): The size of prediction output layer.
            - self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks \
                in MuZero model, default set it to False.
            - categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical \
                distribution for value and reward.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \
                dynamics/prediction mlp, default sets it to True.
            - state_norm (:obj:`bool`): Whether to use normalization for hidden states, default set it to False.
            - downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \
                defaults to True. This option is often used in video games like Atari. In board games like go, \
                we don't need this module.
            - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'.
            - discrete_action_encoding_type (:obj:`str`): The type of encoding for discrete action. Default sets it to 'one_hot'. options = {'one_hot', 'not_one_hot'}
        """
        super(MuZeroModel, self).__init__()
        if isinstance(observation_shape, int) or len(observation_shape) == 1:
            # for vector obs input, e.g. classical control and box2d environments
            # to be compatible with LightZero model/policy, transform to shape: [C, W, H]
            observation_shape = [1, observation_shape, 1]

        self.categorical_distribution = categorical_distribution
        if self.categorical_distribution:
            self.reward_support_size = reward_support_size
            self.value_support_size = value_support_size
        else:
            self.reward_support_size = 1
            self.value_support_size = 1

        self.action_space_size = action_space_size

        assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type
        self.discrete_action_encoding_type = discrete_action_encoding_type
        if self.discrete_action_encoding_type == 'one_hot':
            self.action_encoding_dim = action_space_size
        elif self.discrete_action_encoding_type == 'not_one_hot':
            self.action_encoding_dim = 1
        self.proj_hid = proj_hid
        self.proj_out = proj_out
        self.pred_hid = pred_hid
        self.pred_out = pred_out
        self.self_supervised_learning_loss = self_supervised_learning_loss
        self.last_linear_layer_init_zero = last_linear_layer_init_zero
        self.state_norm = state_norm
        self.downsample = downsample

        flatten_output_size_for_reward_head = (
            (reward_head_channels * math.ceil(observation_shape[1] / 16) *
             math.ceil(observation_shape[2] / 16)) if downsample else
            (reward_head_channels * observation_shape[1] * observation_shape[2])
        )
        flatten_output_size_for_value_head = (
            (value_head_channels * math.ceil(observation_shape[1] / 16) *
             math.ceil(observation_shape[2] / 16)) if downsample else
            (value_head_channels * observation_shape[1] * observation_shape[2])
        )
        flatten_output_size_for_policy_head = (
            (policy_head_channels * math.ceil(observation_shape[1] / 16) *
             math.ceil(observation_shape[2] / 16)) if downsample else
            (policy_head_channels * observation_shape[1] * observation_shape[2])
        )

        self.representation_network = RepresentationNetwork(
            observation_shape,
            num_res_blocks,
            num_channels,
            downsample,
            activation=activation,
            norm_type=norm_type
        )
        self.dynamics_network = DynamicsNetwork(
            observation_shape,
            self.action_encoding_dim,
            num_res_blocks,
            num_channels + self.action_encoding_dim,
            reward_head_channels,
            fc_reward_layers,
            self.reward_support_size,
            flatten_output_size_for_reward_head,
            downsample,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            activation=activation,
            norm_type=norm_type
        )
        self.prediction_network = PredictionNetwork(
            observation_shape,
            action_space_size,
            num_res_blocks,
            num_channels,
            value_head_channels,
            policy_head_channels,
            fc_value_layers,
            fc_policy_layers,
            self.value_support_size,
            flatten_output_size_for_value_head,
            flatten_output_size_for_policy_head,
            downsample,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            activation=activation,
            norm_type=norm_type
        )

        if self.self_supervised_learning_loss:
            # projection used in EfficientZero
            if self.downsample:
                # In Atari, if the observation_shape is set to (12, 96, 96), which indicates the original shape of
                # (3,96,96), and frame_stack_num is 4. Due to downsample, the encoding of observation (latent_state) is
                # (64, 96/16, 96/16), where 64 is the number of channels, 96/16 is the size of the latent state. Thus,
                # self.projection_input_dim = 64 * 96/16 * 96/16 = 64*6*6 = 2304
                ceil_size = math.ceil(observation_shape[1] / 16) * math.ceil(observation_shape[2] / 16)
                self.projection_input_dim = num_channels * ceil_size
            else:
                self.projection_input_dim = num_channels * observation_shape[1] * observation_shape[2]

            self.projection = nn.Sequential(
                nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out)
            )
            self.prediction_head = nn.Sequential(
                nn.Linear(self.proj_out, self.pred_hid),
                nn.BatchNorm1d(self.pred_hid),
                activation,
                nn.Linear(self.pred_hid, self.pred_out),
            )

    def initial_inference(self, obs: torch.Tensor) -> MZNetworkOutput:
        """
        Overview:
            Initial inference of MuZero model, which is the first step of the MuZero model.
            To perform the initial inference, we first use the representation network to obtain the ``latent_state``.
            Then we use the prediction network to predict ``value`` and ``policy_logits`` of the ``latent_state``.
        Arguments:
            - obs (:obj:`torch.Tensor`): The 2D image observation data.
        Returns (MZNetworkOutput):
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
            - reward (:obj:`torch.Tensor`): The predicted reward of input state and selected action. \
                In initial inference, we set it to zero vector.
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
            - reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
         """
        batch_size = obs.size(0)
        latent_state = self._representation(obs)
        policy_logits, value = self._prediction(latent_state)
        return MZNetworkOutput(
            value,
            [0. for _ in range(batch_size)],
            policy_logits,
            latent_state,
        )

    def recurrent_inference(self, latent_state: torch.Tensor, action: torch.Tensor) -> MZNetworkOutput:
        """
        Overview:
            Recurrent inference of MuZero model, which is the rollout step of the MuZero model.
            To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``,
            ``reward``, by the given current ``latent_state`` and ``action``.
            We then use the prediction network to predict the ``value`` and ``policy_logits`` of the current
            ``latent_state``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns (MZNetworkOutput):
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
            - reward (:obj:`torch.Tensor`): The predicted reward of input state and selected action.
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - next_latent_state (:obj:`torch.Tensor`): The predicted next latent state.
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
            - reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
         """
        next_latent_state, reward = self._dynamics(latent_state, action)
        policy_logits, value = self._prediction(next_latent_state)
        return MZNetworkOutput(value, reward, policy_logits, next_latent_state)

    def _representation(self, observation: torch.Tensor) -> torch.Tensor:
        """
        Overview:
            Use the representation network to encode the observations into latent state.
        Arguments:
            - obs (:obj:`torch.Tensor`): The 2D image observation data.
        Returns:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
        """
        latent_state = self.representation_network(observation)
        if self.state_norm:
            latent_state = renormalize(latent_state)
        return latent_state

    def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Overview:
            Use the prediction network to predict ``policy_logits`` and ``value``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
        Returns:
            - policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
            - value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
            - value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
        """
        return self.prediction_network(latent_state)

    def _dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Overview:
            Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state``
            and ``reward``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns:
            - next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
            - reward (:obj:`torch.Tensor`): The predicted reward of the current latent state and selected action.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
        """
        # NOTE: the discrete action encoding type is important for some environments

        # discrete action space
        if self.discrete_action_encoding_type == 'one_hot':
            # Stack latent_state with the one hot encoded action.
            # The final action_encoding shape is (batch_size, action_space_size, latent_state[2], latent_state[3]), e.g. (8, 2, 4, 1).
            if len(action.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action = action.unsqueeze(-1)

            # transform action to one-hot encoding.
            # action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4)
            action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device)
            # transform action to torch.int64
            action = action.long()
            action_one_hot.scatter_(1, action, 1)

            action_encoding_tmp = action_one_hot.unsqueeze(-1).unsqueeze(-1)
            action_encoding = action_encoding_tmp.expand(
                latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3]
            )

        elif self.discrete_action_encoding_type == 'not_one_hot':
            # Stack latent_state with the normalized encoded action.
            # The final action_encoding shape is (batch_size, 1, latent_state[2], latent_state[3]), e.g. (8, 1, 4, 1).
            if len(action.shape) == 2:
                # (batch_size, action_dim=1) -> (batch_size, 1, 1, 1)
                # e.g.,  torch.Size([8, 1]) ->  torch.Size([8, 1, 1, 1])
                action = action.unsqueeze(-1).unsqueeze(-1)
            elif len(action.shape) == 1:
                # (batch_size,) -> (batch_size, 1, 1, 1)
                # e.g.,  -> torch.Size([8, 1, 1, 1])
                action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)

            action_encoding = action.expand(
                latent_state.shape[0], 1, latent_state.shape[2], latent_state.shape[3]
            ) / self.action_space_size

        # state_action_encoding shape: (batch_size, latent_state[1] + action_dim, latent_state[2], latent_state[3]) or
        # (batch_size, latent_state[1] + action_space_size, latent_state[2], latent_state[3]) depending on the discrete_action_encoding_type.
        state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)

        next_latent_state, reward = self.dynamics_network(state_action_encoding)
        if self.state_norm:
            next_latent_state = renormalize(next_latent_state)
        return next_latent_state, reward

    def project(self, latent_state: torch.Tensor, with_grad: bool = True) -> torch.Tensor:
        """
        Overview:
            Project the latent state to a lower dimension to calculate the self-supervised loss, which is involved in
            MuZero algorithm in EfficientZero.
            For more details, please refer to the paper ``Exploring Simple Siamese Representation Learning``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - with_grad (:obj:`bool`): Whether to calculate gradient for the projection result.
        Returns:
            - proj (:obj:`torch.Tensor`): The result embedding vector of projection operation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
                latent state, W_ is the width of latent state.
            - proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size.

        Examples:
            >>> latent_state = torch.randn(256, 64, 6, 6)
            >>> output = self.project(latent_state)
            >>> output.shape # (256, 1024)

        .. note::
            for Atari:
            observation_shape = (12, 96, 96),  # original shape is (3,96,96), frame_stack_num=4
            if downsample is True, latent_state.shape: (batch_size, num_channel, obs_shape[1] / 16, obs_shape[2] / 16)
            i.e., (256, 64, 96 / 16, 96 / 16) = (256, 64, 6, 6)
            latent_state reshape: (256, 64, 6, 6) -> (256,64*6*6) = (256, 2304)
            # self.projection_input_dim = 64*6*6 = 2304
            # self.projection_output_dim = 1024
        """
        latent_state = latent_state.reshape(latent_state.shape[0], -1)
        proj = self.projection(latent_state)

        if with_grad:
            # with grad, use prediction_head
            return self.prediction_head(proj)
        else:
            return proj.detach()

    def get_params_mean(self) -> float:
        return get_params_mean(self)


class DynamicsNetwork(nn.Module):

    def __init__(
        self,
        observation_shape: SequenceType,
        action_encoding_dim: int = 2,
        num_res_blocks: int = 1,
        num_channels: int = 64,
        reward_head_channels: int = 64,
        fc_reward_layers: SequenceType = [32],
        output_support_size: int = 601,
        flatten_output_size_for_reward_head: int = 64,
        downsample: bool = False,
        last_linear_layer_init_zero: bool = True,
        activation: Optional[nn.Module] = nn.ReLU(inplace=True),
        norm_type: Optional[str] = 'BN',
    ):
        """
        Overview:
            The definition of dynamics network in MuZero algorithm, which is used to predict next latent state and
            reward given current latent state and action.
        Arguments:
            - observation_shape (:obj:`SequenceType`): The shape of input observation, e.g., (12, 96, 96).
            - action_encoding_dim (:obj:`int`): The dimension of action encoding.
            - num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
            - num_channels (:obj:`int`): The channels of input, including obs and action encoding.
            - reward_head_channels (:obj:`int`): The channels of reward head.
            - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
            - output_support_size (:obj:`int`): The size of categorical reward output.
            - flatten_output_size_for_reward_head (:obj:`int`): The flatten size of output for reward head, i.e., \
                the input size of reward head.
            - downsample (:obj:`bool`): Whether to downsample the input observation, default set it to False.
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of \
                reward mlp, default sets it to True.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'.
        """
        super().__init__()
        assert norm_type in ['BN', 'LN'], "norm_type must in ['BN', 'LN']"
        assert num_channels > action_encoding_dim, f'num_channels:{num_channels} <= action_encoding_dim:{action_encoding_dim}'

        self.num_channels = num_channels
        self.flatten_output_size_for_reward_head = flatten_output_size_for_reward_head
        self.action_encoding_dim = action_encoding_dim

        self.conv = nn.Conv2d(num_channels, num_channels - self.action_encoding_dim, kernel_size=3, stride=1, padding=1, bias=False)
        
        if norm_type == 'BN':
            self.norm_common = nn.BatchNorm2d(num_channels - self.action_encoding_dim)
        elif norm_type == 'LN':
            if downsample:
                self.norm_common = nn.LayerNorm([num_channels - self.action_encoding_dim, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)])
            else:
                self.norm_common = nn.LayerNorm([num_channels - self.action_encoding_dim, observation_shape[-2], observation_shape[-1]])
            
        self.resblocks = nn.ModuleList(
            [
                ResBlock(
                    in_channels=num_channels - self.action_encoding_dim, activation=activation, norm_type='BN', res_type='basic', bias=False
                ) for _ in range(num_res_blocks)
            ]
        )

        self.conv1x1_reward = nn.Conv2d(num_channels - self.action_encoding_dim, reward_head_channels, 1)

        if norm_type == 'BN':
            self.norm_reward = nn.BatchNorm2d(reward_head_channels)
        elif norm_type == 'LN':
            if downsample:
                self.norm_reward = nn.LayerNorm([reward_head_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)])
            else:
                self.norm_reward = nn.LayerNorm([reward_head_channels, observation_shape[-2], observation_shape[-1]])

        self.fc_reward_head = MLP(
            self.flatten_output_size_for_reward_head,
            hidden_channels=fc_reward_layers[0],
            layer_num=len(fc_reward_layers) + 1,
            out_channels=output_support_size,
            activation=activation,
            norm_type=norm_type,
            output_activation=False,
            output_norm=False,
            last_linear_layer_init_zero=last_linear_layer_init_zero
        )
        self.activation = activation

    def forward(self, state_action_encoding: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
         Overview:
            Forward computation of the dynamics network. Predict the next latent state given current latent state and action.
         Arguments:
             - state_action_encoding (:obj:`torch.Tensor`): The state-action encoding, which is the concatenation of \
                    latent state and action encoding, with shape (batch_size, num_channels, height, width).
         Returns:
             - next_latent_state (:obj:`torch.Tensor`): The next latent state, with shape (batch_size, num_channels, \
                    height, width).
            - reward (:obj:`torch.Tensor`): The predicted reward, with shape (batch_size, output_support_size).
         """
        # take the state encoding, state_action_encoding[:, -self.action_encoding_dim:, :, :] is action encoding
        state_encoding = state_action_encoding[:, :-self.action_encoding_dim:, :, :]
        x = self.conv(state_action_encoding)
        x = self.norm_common(x)

        # the residual link: add state encoding to the state_action encoding
        x += state_encoding
        x = self.activation(x)

        for block in self.resblocks:
            x = block(x)
        next_latent_state = x

        x = self.conv1x1_reward(next_latent_state)
        x = self.norm_reward(x)
        x = self.activation(x)
        x = x.view(-1, self.flatten_output_size_for_reward_head)

        # use the fully connected layer to predict reward
        reward = self.fc_reward_head(x)

        return next_latent_state, reward

    def get_dynamic_mean(self) -> float:
        return get_dynamic_mean(self)

    def get_reward_mean(self) -> Tuple[ndarray, float]:
        return get_reward_mean(self)