File size: 19,412 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from typing import Optional, Tuple

import torch
import torch.nn as nn
from ding.utils import MODEL_REGISTRY, SequenceType

from .common import RepresentationNetworkMLP, PredictionNetworkMLP
from .muzero_model_mlp import DynamicsNetwork
from .stochastic_muzero_model import StochasticMuZeroModel, ChanceEncoder
from .utils import renormalize


@MODEL_REGISTRY.register('StochasticMuZeroModelMLP')
class StochasticMuZeroModelMLP(StochasticMuZeroModel):

    def __init__(
            self,
            observation_shape: int = 2,
            action_space_size: int = 6,
            chance_space_size: int = 2,
            latent_state_dim: int = 256,
            fc_reward_layers: SequenceType = [32],
            fc_value_layers: SequenceType = [32],
            fc_policy_layers: SequenceType = [32],
            reward_support_size: int = 601,
            value_support_size: int = 601,
            proj_hid: int = 1024,
            proj_out: int = 1024,
            pred_hid: int = 512,
            pred_out: int = 1024,
            self_supervised_learning_loss: bool = False,
            categorical_distribution: bool = True,
            activation: Optional[nn.Module] = nn.ReLU(inplace=True),
            last_linear_layer_init_zero: bool = True,
            state_norm: bool = False,
            discrete_action_encoding_type: str = 'one_hot',
            norm_type: Optional[str] = 'BN',
            res_connection_in_dynamics: bool = False,
            *args,
            **kwargs
    ):
        """
        Overview:
            The definition of the network model of Stochastic, which is a generalization version for 1D vector obs.  \
            The networks are mainly built on fully connected layers. \
            The representation network is an MLP network which maps the raw observation to a latent state. \
            The dynamics network is an MLP network which predicts the next latent state, and reward given the current latent state and action. \
            The prediction network is an MLP network which predicts the value and policy given the current latent state.
        Arguments:
            - observation_shape (:obj:`int`): Observation space shape, e.g. 8 for Lunarlander.
            - action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space.
            - action_space_size: (:obj:`int`): Action space size, e.g. 4 for Lunarlander.
            - latent_state_dim (:obj:`int`): The dimension of latent state, such as 256.
            - fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
            - fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
            - fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
            - reward_support_size (:obj:`int`): The size of categorical reward output
            - value_support_size (:obj:`int`): The size of categorical value output.
            - proj_hid (:obj:`int`): The size of projection hidden layer.
            - proj_out (:obj:`int`): The size of projection output layer.
            - pred_hid (:obj:`int`): The size of prediction hidden layer.
            - pred_out (:obj:`int`): The size of prediction output layer.
            - self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in Stochastic model, default set it to False.
            - categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution for value, reward/value_prefix.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of value/policy mlp, default sets it to True.
            - state_norm (:obj:`bool`): Whether to use normalization for latent states, default sets it to True.
            - discrete_action_encoding_type (:obj:`str`): The encoding type of discrete action, which can be 'one_hot' or 'not_one_hot'.
            - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'.
            - res_connection_in_dynamics (:obj:`bool`): Whether to use residual connection for dynamics network, default set it to False.
        """
        super(StochasticMuZeroModelMLP, self).__init__()
        self.categorical_distribution = categorical_distribution
        if not self.categorical_distribution:
            self.reward_support_size = 1
            self.value_support_size = 1
        else:
            self.reward_support_size = reward_support_size
            self.value_support_size = value_support_size

        self.action_space_size = action_space_size
        self.chance_space_size = chance_space_size

        self.continuous_action_space = False
        # The dim of action space. For discrete action space, it is 1.
        # For continuous action space, it is the dimension of continuous action.
        self.action_space_dim = action_space_size if self.continuous_action_space else 1
        assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type
        self.discrete_action_encoding_type = discrete_action_encoding_type
        if self.continuous_action_space:
            self.action_encoding_dim = action_space_size
        else:
            if self.discrete_action_encoding_type == 'one_hot':
                self.action_encoding_dim = action_space_size
            elif self.discrete_action_encoding_type == 'not_one_hot':
                self.action_encoding_dim = 1

        self.latent_state_dim = latent_state_dim
        self.proj_hid = proj_hid
        self.proj_out = proj_out
        self.pred_hid = pred_hid
        self.pred_out = pred_out
        self.self_supervised_learning_loss = self_supervised_learning_loss
        self.last_linear_layer_init_zero = last_linear_layer_init_zero
        self.state_norm = state_norm
        self.res_connection_in_dynamics = res_connection_in_dynamics

        self.representation_network = RepresentationNetworkMLP(
            observation_shape=observation_shape, hidden_channels=self.latent_state_dim, norm_type=norm_type
        )
        # TODO(pu): different input data type for chance_encoder
        # here, the input is two concatenated frames
        self.chance_encoder = ChanceEncoder(observation_shape * 2, chance_space_size, encoder_backbone_type='mlp')
        self.dynamics_network = DynamicsNetwork(
            action_encoding_dim=self.action_encoding_dim,
            num_channels=self.latent_state_dim + self.action_encoding_dim,
            common_layer_num=2,
            fc_reward_layers=fc_reward_layers,
            output_support_size=self.reward_support_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            norm_type=norm_type,
            res_connection_in_dynamics=self.res_connection_in_dynamics,
        )

        self.prediction_network = PredictionNetworkMLP(
            action_space_size=action_space_size,
            num_channels=latent_state_dim,
            fc_value_layers=fc_value_layers,
            fc_policy_layers=fc_policy_layers,
            output_support_size=self.value_support_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            norm_type=norm_type
        )

        self.afterstate_dynamics_network = AfterstateDynamicsNetwork(
            action_encoding_dim=self.action_encoding_dim,
            num_channels=self.latent_state_dim + self.action_encoding_dim,
            common_layer_num=2,
            fc_reward_layers=fc_reward_layers,
            output_support_size=self.reward_support_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            norm_type=norm_type,
            res_connection_in_dynamics=self.res_connection_in_dynamics,
        )
        self.afterstate_prediction_network = AfterstatePredictionNetworkMLP(
            chance_space_size=chance_space_size,
            num_channels=latent_state_dim,
            fc_value_layers=fc_value_layers,
            fc_policy_layers=fc_policy_layers,
            output_support_size=self.value_support_size,
            last_linear_layer_init_zero=self.last_linear_layer_init_zero,
            norm_type=norm_type
        )

        if self.self_supervised_learning_loss:
            # self_supervised_learning_loss related network proposed in EfficientZero
            self.projection_input_dim = latent_state_dim

            self.projection = nn.Sequential(
                nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
                nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out)
            )
            self.prediction_head = nn.Sequential(
                nn.Linear(self.proj_out, self.pred_hid),
                nn.BatchNorm1d(self.pred_hid),
                activation,
                nn.Linear(self.pred_hid, self.pred_out),
            )

    def _dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Overview:
            Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` \
            ``reward`` and ``next_reward_hidden_state``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns:
            - next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
            - next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward.
            - reward (:obj:`torch.Tensor`): The predicted reward for input state.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
        """
        # NOTE: the discrete action encoding type is important for some environments

        # discrete action space
        if self.discrete_action_encoding_type == 'one_hot':
            # Stack latent_state with the one hot encoded action
            if len(action.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action = action.unsqueeze(-1)

            # transform action to one-hot encoding.
            # action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4)
            action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device)
            # transform action to torch.int64
            action = action.long()
            action_one_hot.scatter_(1, action, 1)
            action_encoding = action_one_hot
        elif self.discrete_action_encoding_type == 'not_one_hot':
            action_encoding = action / self.action_space_size
            if len(action_encoding.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action_encoding = action_encoding.unsqueeze(-1)

        action_encoding = action_encoding.to(latent_state.device).float()
        # state_action_encoding shape: (batch_size, latent_state[1] + action_dim]) or
        # (batch_size, latent_state[1] + action_space_size]) depending on the discrete_action_encoding_type.
        state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)

        next_latent_state, reward = self.dynamics_network(state_action_encoding)

        if not self.state_norm:
            return next_latent_state, reward
        else:
            next_latent_state_normalized = renormalize(next_latent_state)
            return next_latent_state_normalized, reward

    def _afterstate_dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[
        torch.Tensor, torch.Tensor]:
        """
        Overview:
            Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` \
            ``reward`` and ``next_reward_hidden_state``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward.
            - action (:obj:`torch.Tensor`): The predicted action to rollout.
        Returns:
            - next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
            - next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward.
            - reward (:obj:`torch.Tensor`): The predicted reward for input state.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
            - next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
        """
        # NOTE: the discrete action encoding type is important for some environments

        # discrete action space
        if self.discrete_action_encoding_type == 'one_hot':
            # Stack latent_state with the one hot encoded action
            if len(action.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action = action.unsqueeze(-1)

            # transform action to one-hot encoding.
            # action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4)
            action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device)
            # transform action to torch.int64
            action = action.long()
            action_one_hot.scatter_(1, action, 1)
            action_encoding = action_one_hot
        elif self.discrete_action_encoding_type == 'not_one_hot':
            action_encoding = action / self.action_space_size
            if len(action_encoding.shape) == 1:
                # (batch_size, ) -> (batch_size, 1)
                # e.g.,  torch.Size([8]) ->  torch.Size([8, 1])
                action_encoding = action_encoding.unsqueeze(-1)

        action_encoding = action_encoding.to(latent_state.device).float()
        # state_action_encoding shape: (batch_size, latent_state[1] + action_dim]) or
        # (batch_size, latent_state[1] + action_space_size]) depending on the discrete_action_encoding_type.
        state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)

        next_latent_state, reward = self.dynamics_network(state_action_encoding)

        if not self.state_norm:
            return next_latent_state, reward
        else:
            next_latent_state_normalized = renormalize(next_latent_state)
            return next_latent_state_normalized, reward

    def project(self, latent_state: torch.Tensor, with_grad=True) -> torch.Tensor:
        """
        Overview:
            Project the latent state to a lower dimension to calculate the self-supervised loss, which is \
            proposed in EfficientZero. For more details, please refer to the paper ``Exploring Simple Siamese Representation Learning``.
        Arguments:
            - latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
            - with_grad (:obj:`bool`): Whether to calculate gradient for the projection result.
        Returns:
            - proj (:obj:`torch.Tensor`): The result embedding vector of projection operation.
        Shapes:
            - latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state.
            - proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size.

        Examples:
            >>> latent_state = torch.randn(256, 64)
            >>> output = self.project(latent_state)
            >>> output.shape # (256, 1024)
        """
        proj = self.projection(latent_state)

        if with_grad:
            # with grad, use prediction_head
            return self.prediction_head(proj)
        else:
            return proj.detach()


AfterstateDynamicsNetwork = DynamicsNetwork


class AfterstatePredictionNetworkMLP(PredictionNetworkMLP):

    def __init__(
            self,
            chance_space_size,
            num_channels,
            common_layer_num: int = 2,
            fc_value_layers: SequenceType = [32],
            fc_policy_layers: SequenceType = [32],
            output_support_size: int = 601,
            last_linear_layer_init_zero: bool = True,
            activation: Optional[nn.Module] = nn.ReLU(inplace=True),
            norm_type: Optional[str] = 'BN',
    ):
        """
        Overview:
            The definition of policy and value prediction network with Multi-Layer Perceptron (MLP), \
            which is used to predict value and policy by the given latent state.
        Arguments:
            - chance_space_size: (:obj:`int`): Chance space size, usually an integer number. For discrete action \
                space, it is the number of discrete chance outcomes.
            - num_channels (:obj:`int`): The channels of latent states.
            - fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
            - fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
            - output_support_size (:obj:`int`): The size of categorical value output.
            - last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \
                dynamics/prediction mlp, default sets it to True.
            - activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
                operation to speedup, e.g. ReLU(inplace=True).
            - norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'.
        """
        super(AfterstatePredictionNetworkMLP, self).__init__(chance_space_size, num_channels, common_layer_num,
                                                             fc_value_layers, fc_policy_layers, output_support_size,
                                                             last_linear_layer_init_zero
                                                             , activation, norm_type)