File size: 18,005 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import copy
import random
from typing import Union, Tuple, List, Dict

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.model import FCEncoder, ConvEncoder
from ding.reward_model.base_reward_model import BaseRewardModel
from ding.torch_utils.data_helper import to_tensor
from ding.utils import RunningMeanStd
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY
from easydict import EasyDict


class RNDNetwork(nn.Module):

    def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType) -> None:
        super(RNDNetwork, self).__init__()
        if isinstance(obs_shape, int) or len(obs_shape) == 1:
            self.target = FCEncoder(obs_shape, hidden_size_list)
            self.predictor = FCEncoder(obs_shape, hidden_size_list)
        elif len(obs_shape) == 3:
            self.target = ConvEncoder(obs_shape, hidden_size_list)
            self.predictor = ConvEncoder(obs_shape, hidden_size_list)
        else:
            raise KeyError(
                "not support obs_shape for pre-defined encoder: {}, please customize your own RND model".
                format(obs_shape)
            )
        for param in self.target.parameters():
            param.requires_grad = False

    def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        predict_feature = self.predictor(obs)
        with torch.no_grad():
            target_feature = self.target(obs)
        return predict_feature, target_feature


class RNDNetworkRepr(nn.Module):
    """
    Overview:
        The RND reward model class (https://arxiv.org/abs/1810.12894v1) with representation network.
    """

    def __init__(self, obs_shape: Union[int, SequenceType], latent_shape: Union[int, SequenceType],  hidden_size_list: SequenceType,
                 representation_network) -> None:
        super(RNDNetworkRepr, self).__init__()
        self.representation_network = representation_network
        if isinstance(obs_shape, int) or len(obs_shape) == 1:
            self.target = FCEncoder(obs_shape, hidden_size_list)
            self.predictor = FCEncoder(latent_shape, hidden_size_list)
        elif len(obs_shape) == 3:
            self.target = ConvEncoder(obs_shape, hidden_size_list)
            self.predictor = ConvEncoder(latent_shape, hidden_size_list)
        else:
            raise KeyError(
                "not support obs_shape for pre-defined encoder: {}, please customize your own RND model".
                format(obs_shape)
            )
        for param in self.target.parameters():
            param.requires_grad = False

    def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        predict_feature = self.predictor(self.representation_network(obs))
        with torch.no_grad():
            target_feature = self.target(obs)

        return predict_feature, target_feature


@REWARD_MODEL_REGISTRY.register('rnd_muzero')
class RNDRewardModel(BaseRewardModel):
    """
    Overview:
        The RND reward model class (https://arxiv.org/abs/1810.12894v1) modified for MuZero.
    Interface:
        ``estimate``, ``train``, ``collect_data``, ``clear_data``, \
            ``__init__``, ``_train``, ``load_state_dict``, ``state_dict``
    Config:
        == ====================  =====  =============  =======================================  =======================
        ID Symbol                Type   Default Value  Description                              Other(Shape)
        == ====================  =====  =============  =======================================  =======================
        1   ``type``              str     rnd          | Reward model register name, refer      |
                                                       | to registry ``REWARD_MODEL_REGISTRY``  |
        2  | ``intrinsic_``      str      add          | the intrinsic reward type              | including add, new
           | ``reward_type``                           |                                        | , or assign
        3  | ``learning_rate``   float    0.001        | The step size of gradient descent      |
        4  | ``batch_size``      int      64           | Training batch size                    |
        5  | ``hidden``          list     [64, 64,     | the MLP layer shape                    |
           | ``_size_list``      (int)    128]         |                                        |
        6  | ``update_per_``     int      100          | Number of updates per collect          |
           | ``collect``                               |                                        |
        7  | ``input_norm``        bool     True         | Observation normalization              |
        8  | ``input_norm_``       int      0            | min clip value for obs normalization   |
           | ``clamp_min``
        9  | ``input_norm_``       int      1            | max clip value for obs normalization   |
           | ``clamp_max``
        10 | ``intrinsic_``      float    0.01         | the weight of intrinsic reward         | r = w*r_i + r_e
             ``reward_weight``
        11 | ``extrinsic_``      bool     True         | Whether to normlize extrinsic reward
             ``reward_norm``
        12 | ``extrinsic_``      int      1            | the upper bound of the reward
            ``reward_norm_max``                        | normalization
        == ====================  =====  =============  =======================================  =======================
    """
    config = dict(
        # (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
        type='rnd',
        # (str) The intrinsic reward type, including add, new, or assign.
        intrinsic_reward_type='add',
        # (float) The step size of gradient descent.
        learning_rate=1e-3,
        # (float) Batch size.
        batch_size=64,
        # (list(int)) Sequence of ``hidden_size`` of reward network.
        # If obs.shape == 1,  use MLP layers.
        # If obs.shape == 3,  use conv layer and final dense layer.
        hidden_size_list=[64, 64, 128],
        # (int) How many updates(iterations) to train after collector's one collection.
        # Bigger "update_per_collect" means bigger off-policy.
        # collect data -> update policy-> collect data -> ...
        update_per_collect=100,
        # (bool) Observation normalization: transform obs to mean 0, std 1.
        input_norm=True,
        # (int) Min clip value for observation normalization.
        input_norm_clamp_min=-1,
        # (int) Max clip value for observation normalization.
        input_norm_clamp_max=1,
        # Means the relative weight of RND intrinsic_reward.
        # (float) The weight of intrinsic reward
        # r = intrinsic_reward_weight * r_i + r_e.
        intrinsic_reward_weight=0.01,
        # (bool) Whether to normalize extrinsic reward.
        # Normalize the reward to [0, extrinsic_reward_norm_max].
        extrinsic_reward_norm=True,
        # (int) The upper bound of the reward normalization.
        extrinsic_reward_norm_max=1,
    )

    def __init__(self, config: EasyDict, device: str = 'cpu', tb_logger: 'SummaryWriter' = None,
                 representation_network: nn.Module = None, target_representation_network: nn.Module = None,
                 use_momentum_representation_network: bool = True) -> None:  # noqa
        super(RNDRewardModel, self).__init__()
        self.cfg = config
        self.representation_network = representation_network
        self.target_representation_network = target_representation_network
        self.use_momentum_representation_network = use_momentum_representation_network
        self.input_type = self.cfg.input_type
        assert self.input_type in ['obs', 'latent_state', 'obs_latent_state'], self.input_type
        self.device = device
        assert self.device == "cpu" or self.device.startswith("cuda")
        self.rnd_buffer_size = config.rnd_buffer_size
        self.intrinsic_reward_type = self.cfg.intrinsic_reward_type
        if tb_logger is None:
            from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter('rnd_reward_model')
        self.tb_logger = tb_logger
        if self.input_type == 'obs':
            self.input_shape = self.cfg.obs_shape
            self.reward_model = RNDNetwork(self.input_shape, self.cfg.hidden_size_list).to(self.device)
        elif self.input_type == 'latent_state':
            self.input_shape = self.cfg.latent_state_dim
            self.reward_model = RNDNetwork(self.input_shape, self.cfg.hidden_size_list).to(self.device)
        elif self.input_type == 'obs_latent_state':
            if self.use_momentum_representation_network:
                self.reward_model = RNDNetworkRepr(self.cfg.obs_shape, self.cfg.latent_state_dim, self.cfg.hidden_size_list[0:-1],
                                                  self.target_representation_network).to(self.device)
            else:
                self.reward_model = RNDNetworkRepr(self.cfg.obs_shape, self.cfg.latent_state_dim, self.cfg.hidden_size_list[0:-1],
                                                  self.representation_network).to(self.device)

        assert self.intrinsic_reward_type in ['add', 'new', 'assign']
        if self.input_type in ['obs', 'obs_latent_state']:
            self.train_obs = []
        if self.input_type == 'latent_state':
            self.train_latent_state = []

        self._optimizer_rnd = torch.optim.Adam(
            self.reward_model.predictor.parameters(), lr=self.cfg.learning_rate, weight_decay=self.cfg.weight_decay
        )

        self._running_mean_std_rnd_reward = RunningMeanStd(epsilon=1e-4)
        self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4)
        self.estimate_cnt_rnd = 0
        self.train_cnt_rnd = 0

    def _train_with_data_one_step(self) -> None:
        if self.input_type in ['obs', 'obs_latent_state']:
            train_data = random.sample(self.train_obs, self.cfg.batch_size)
        elif self.input_type == 'latent_state':
            train_data = random.sample(self.train_latent_state, self.cfg.batch_size)

        train_data = torch.stack(train_data).to(self.device)

        if self.cfg.input_norm:
            # Note: observation normalization: transform obs to mean 0, std 1
            self._running_mean_std_rnd_obs.update(train_data.detach().cpu().numpy())
            normalized_train_data = (train_data - to_tensor(self._running_mean_std_rnd_obs.mean).to(
                self.device)) / to_tensor(
                self._running_mean_std_rnd_obs.std
            ).to(self.device)
            train_data = torch.clamp(normalized_train_data, min=self.cfg.input_norm_clamp_min,
                                     max=self.cfg.input_norm_clamp_max)

        predict_feature, target_feature = self.reward_model(train_data)
        loss = F.mse_loss(predict_feature, target_feature)

        self.tb_logger.add_scalar('rnd_reward_model/rnd_mse_loss', loss, self.train_cnt_rnd)
        self._optimizer_rnd.zero_grad()
        loss.backward()
        self._optimizer_rnd.step()

    def train_with_data(self) -> None:
        for _ in range(self.cfg.update_per_collect):
            # for name, param in self.reward_model.named_parameters():
            #     if param.grad is not None:
            #         print(f"{name}: {torch.isnan(param.grad).any()}, {torch.isinf(param.grad).any()}")
            #         print(f"{name}: grad min: {param.grad.min()}, grad max: {param.grad.max()}")
            # # enable the following line to check whether there is nan or inf in the gradient.
            # torch.autograd.set_detect_anomaly(True)
            self._train_with_data_one_step()
            self.train_cnt_rnd += 1

    def estimate(self, data: list) -> List[Dict]:
        """
        Rewrite the reward key in each row of the data.
        """
        # current_batch, target_batch = data
        # obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch
        # target_reward, target_value, target_policy = target_batch
        obs_batch_orig = data[0][0]
        target_reward = data[1][0]
        batch_size = obs_batch_orig.shape[0]
        # reshape to (4, 2835, 6)
        obs_batch_tmp = np.reshape(obs_batch_orig, (batch_size, self.cfg.obs_shape, 6))
        # reshape to (24, 2835)
        obs_batch_tmp = np.reshape(obs_batch_tmp, (batch_size * 6, self.cfg.obs_shape))

        if self.input_type == 'latent_state':
            with torch.no_grad():
                latent_state = self.representation_network(torch.from_numpy(obs_batch_tmp).to(self.device))
            input_data = latent_state
        elif self.input_type in ['obs', 'obs_latent_state']:
            input_data = to_tensor(obs_batch_tmp).to(self.device)

        # NOTE: deepcopy reward part of data is very important,
        # otherwise the reward of data in the replay buffer will be incorrectly modified.
        target_reward_augmented = copy.deepcopy(target_reward)
        target_reward_augmented = np.reshape(target_reward_augmented, (batch_size * 6, 1))

        if self.cfg.input_norm:
            # add this line to avoid inplace operation on the original tensor.
            input_data = input_data.clone()
            # Note: observation normalization: transform obs to mean 0, std 1
            input_data = (input_data - to_tensor(self._running_mean_std_rnd_obs.mean
                                                 ).to(self.device)) / to_tensor(self._running_mean_std_rnd_obs.std).to(
                self.device)
            input_data = torch.clamp(input_data, min=self.cfg.input_norm_clamp_min, max=self.cfg.input_norm_clamp_max)
        else:
            input_data = input_data
        with torch.no_grad():
            predict_feature, target_feature = self.reward_model(input_data)
            mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
            self._running_mean_std_rnd_reward.update(mse.detach().cpu().numpy())

            # Note: according to the min-max normalization, transform rnd reward to [0,1]
            rnd_reward = (mse - mse.min()) / (mse.max() - mse.min() + 1e-6)

            # save the rnd_reward statistics into tb_logger
            self.estimate_cnt_rnd += 1
            self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd)
            self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd)
            self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd)
            self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_std', rnd_reward.std(), self.estimate_cnt_rnd)

        rnd_reward = rnd_reward.to(self.device).unsqueeze(1).cpu().numpy()
        if self.intrinsic_reward_type == 'add':
            if self.cfg.extrinsic_reward_norm:
                target_reward_augmented = target_reward_augmented / self.cfg.extrinsic_reward_norm_max + rnd_reward * self.cfg.intrinsic_reward_weight
            else:
                target_reward_augmented = target_reward_augmented + rnd_reward * self.cfg.intrinsic_reward_weight
        elif self.intrinsic_reward_type == 'new':
            if self.cfg.extrinsic_reward_norm:
                target_reward_augmented = target_reward_augmented / self.cfg.extrinsic_reward_norm_max
        elif self.intrinsic_reward_type == 'assign':
            target_reward_augmented = rnd_reward

        self.tb_logger.add_scalar('augmented_reward/reward_max', np.max(target_reward_augmented), self.estimate_cnt_rnd)
        self.tb_logger.add_scalar('augmented_reward/reward_mean', np.mean(target_reward_augmented),
                                  self.estimate_cnt_rnd)
        self.tb_logger.add_scalar('augmented_reward/reward_min', np.min(target_reward_augmented), self.estimate_cnt_rnd)
        self.tb_logger.add_scalar('augmented_reward/reward_std', np.std(target_reward_augmented), self.estimate_cnt_rnd)

        # reshape to (target_reward_augmented.shape[0], 6, 1)
        target_reward_augmented = np.reshape(target_reward_augmented, (batch_size, 6, 1))
        data[1][0] = target_reward_augmented
        train_data_augmented = data

        return train_data_augmented

    def collect_data(self, data: list) -> None:
        # TODO(pu): now we only collect the first 300 steps of each game segment.
        collected_transitions = np.concatenate([game_segment.obs_segment[:300] for game_segment in data[0]], axis=0)
        if self.input_type == 'latent_state':
            with torch.no_grad():
                self.train_latent_state.extend(
                    self.representation_network(torch.from_numpy(collected_transitions).to(self.device)))
        elif self.input_type == 'obs':
            self.train_obs.extend(to_tensor(collected_transitions).to(self.device))
        elif self.input_type == 'obs_latent_state':
            self.train_obs.extend(to_tensor(collected_transitions).to(self.device))

    def clear_old_data(self) -> None:
        if self.input_type == 'latent_state':
            if len(self.train_latent_state) >= self.cfg.rnd_buffer_size:
                self.train_latent_state = self.train_latent_state[-self.cfg.rnd_buffer_size:]
        elif self.input_type == 'obs':
            if len(self.train_obs) >= self.cfg.rnd_buffer_size:
                self.train_obs = self.train_obs[-self.cfg.rnd_buffer_size:]
        elif self.input_type == 'obs_latent_state':
            if len(self.train_obs) >= self.cfg.rnd_buffer_size:
                self.train_obs = self.train_obs[-self.cfg.rnd_buffer_size:]

    def state_dict(self) -> Dict:
        return self.reward_model.state_dict()

    def load_state_dict(self, _state_dict: Dict) -> None:
        self.reward_model.load_state_dict(_state_dict)

    def clear_data(self):
        pass

    def train(self):
        pass