File size: 9,777 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from typing import Union, Optional
from easydict import EasyDict
import torch
import torch.nn as nn
import treetensor.torch as ttorch
from copy import deepcopy
from ding.utils import SequenceType, squeeze
from ding.model.common import ReparameterizationHead, RegressionHead, MultiHead, \
    FCEncoder, ConvEncoder, IMPALAConvEncoder, PopArtVHead
from ding.torch_utils import MLP, fc_block


class DiscretePolicyHead(nn.Module):

    def __init__(
            self,
            hidden_size: int,
            output_size: int,
            layer_num: int = 1,
            activation: Optional[nn.Module] = nn.ReLU(),
            norm_type: Optional[str] = None,
    ) -> None:
        super(DiscretePolicyHead, self).__init__()
        self.main = nn.Sequential(
            MLP(
                hidden_size,
                hidden_size,
                hidden_size,
                layer_num,
                layer_fn=nn.Linear,
                activation=activation,
                norm_type=norm_type
            ), fc_block(hidden_size, output_size)
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.main(x)


class PPOFModel(nn.Module):
    mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']

    def __init__(
        self,
        obs_shape: Union[int, SequenceType],
        action_shape: Union[int, SequenceType, EasyDict],
        action_space: str = 'discrete',
        share_encoder: bool = True,
        encoder_hidden_size_list: SequenceType = [128, 128, 64],
        actor_head_hidden_size: int = 64,
        actor_head_layer_num: int = 1,
        critic_head_hidden_size: int = 64,
        critic_head_layer_num: int = 1,
        activation: Optional[nn.Module] = nn.ReLU(),
        norm_type: Optional[str] = None,
        sigma_type: Optional[str] = 'independent',
        fixed_sigma_value: Optional[int] = 0.3,
        bound_type: Optional[str] = None,
        encoder: Optional[torch.nn.Module] = None,
        popart_head=False,
    ) -> None:
        super(PPOFModel, self).__init__()
        obs_shape = squeeze(obs_shape)
        action_shape = squeeze(action_shape)
        self.obs_shape, self.action_shape = obs_shape, action_shape
        self.share_encoder = share_encoder

        # Encoder Type
        def new_encoder(outsize):
            if isinstance(obs_shape, int) or len(obs_shape) == 1:
                return FCEncoder(
                    obs_shape=obs_shape,
                    hidden_size_list=encoder_hidden_size_list,
                    activation=activation,
                    norm_type=norm_type
                )
            elif len(obs_shape) == 3:
                return ConvEncoder(
                    obs_shape=obs_shape,
                    hidden_size_list=encoder_hidden_size_list,
                    activation=activation,
                    norm_type=norm_type
                )
            else:
                raise RuntimeError(
                    "not support obs_shape for pre-defined encoder: {}, please customize your own encoder".
                    format(obs_shape)
                )

        if self.share_encoder:
            assert actor_head_hidden_size == critic_head_hidden_size, \
                "actor and critic network head should have same size."
            if encoder:
                if isinstance(encoder, torch.nn.Module):
                    self.encoder = encoder
                else:
                    raise ValueError("illegal encoder instance.")
            else:
                self.encoder = new_encoder(actor_head_hidden_size)
        else:
            if encoder:
                if isinstance(encoder, torch.nn.Module):
                    self.actor_encoder = encoder
                    self.critic_encoder = deepcopy(encoder)
                else:
                    raise ValueError("illegal encoder instance.")
            else:
                self.actor_encoder = new_encoder(actor_head_hidden_size)
                self.critic_encoder = new_encoder(critic_head_hidden_size)

        # Head Type
        if not popart_head:
            self.critic_head = RegressionHead(
                critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type
            )
        else:
            self.critic_head = PopArtVHead(
                critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type
            )

        self.action_space = action_space
        assert self.action_space in ['discrete', 'continuous', 'hybrid'], self.action_space
        if self.action_space == 'continuous':
            self.multi_head = False
            self.actor_head = ReparameterizationHead(
                actor_head_hidden_size,
                action_shape,
                actor_head_layer_num,
                sigma_type=sigma_type,
                activation=activation,
                norm_type=norm_type,
                bound_type=bound_type
            )
        elif self.action_space == 'discrete':
            actor_head_cls = DiscretePolicyHead
            multi_head = not isinstance(action_shape, int)
            self.multi_head = multi_head
            if multi_head:
                self.actor_head = MultiHead(
                    actor_head_cls,
                    actor_head_hidden_size,
                    action_shape,
                    layer_num=actor_head_layer_num,
                    activation=activation,
                    norm_type=norm_type
                )
            else:
                self.actor_head = actor_head_cls(
                    actor_head_hidden_size,
                    action_shape,
                    actor_head_layer_num,
                    activation=activation,
                    norm_type=norm_type
                )
        elif self.action_space == 'hybrid':  # HPPO
            # hybrid action space: action_type(discrete) + action_args(continuous),
            # such as {'action_type_shape': torch.LongTensor([0]), 'action_args_shape': torch.FloatTensor([0.1, -0.27])}
            action_shape.action_args_shape = squeeze(action_shape.action_args_shape)
            action_shape.action_type_shape = squeeze(action_shape.action_type_shape)
            actor_action_args = ReparameterizationHead(
                actor_head_hidden_size,
                action_shape.action_args_shape,
                actor_head_layer_num,
                sigma_type=sigma_type,
                fixed_sigma_value=fixed_sigma_value,
                activation=activation,
                norm_type=norm_type,
                bound_type=bound_type,
            )
            actor_action_type = DiscretePolicyHead(
                actor_head_hidden_size,
                action_shape.action_type_shape,
                actor_head_layer_num,
                activation=activation,
                norm_type=norm_type,
            )
            self.actor_head = nn.ModuleList([actor_action_type, actor_action_args])

        # must use list, not nn.ModuleList
        if self.share_encoder:
            self.actor = [self.encoder, self.actor_head]
            self.critic = [self.encoder, self.critic_head]
        else:
            self.actor = [self.actor_encoder, self.actor_head]
            self.critic = [self.critic_encoder, self.critic_head]
        # Convenient for calling some apis (e.g. self.critic.parameters()),
        # but may cause misunderstanding when `print(self)`
        self.actor = nn.ModuleList(self.actor)
        self.critic = nn.ModuleList(self.critic)

    def forward(self, inputs: ttorch.Tensor, mode: str) -> ttorch.Tensor:
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs)

    def compute_actor(self, x: ttorch.Tensor) -> ttorch.Tensor:
        if self.share_encoder:
            x = self.encoder(x)
        else:
            x = self.actor_encoder(x)

        if self.action_space == 'discrete':
            return self.actor_head(x)
        elif self.action_space == 'continuous':
            x = self.actor_head(x)  # mu, sigma
            return ttorch.as_tensor(x)
        elif self.action_space == 'hybrid':
            action_type = self.actor_head[0](x)
            action_args = self.actor_head[1](x)
            return ttorch.as_tensor({'action_type': action_type, 'action_args': action_args})

    def compute_critic(self, x: ttorch.Tensor) -> ttorch.Tensor:
        if self.share_encoder:
            x = self.encoder(x)
        else:
            x = self.critic_encoder(x)
        x = self.critic_head(x)
        return x

    def compute_actor_critic(self, x: ttorch.Tensor) -> ttorch.Tensor:
        if self.share_encoder:
            actor_embedding = critic_embedding = self.encoder(x)
        else:
            actor_embedding = self.actor_encoder(x)
            critic_embedding = self.critic_encoder(x)

        value = self.critic_head(critic_embedding)

        if self.action_space == 'discrete':
            logit = self.actor_head(actor_embedding)
            return ttorch.as_tensor({'logit': logit, 'value': value['pred']})
        elif self.action_space == 'continuous':
            x = self.actor_head(actor_embedding)
            return ttorch.as_tensor({'logit': x, 'value': value['pred']})
        elif self.action_space == 'hybrid':
            action_type = self.actor_head[0](actor_embedding)
            action_args = self.actor_head[1](actor_embedding)
            return ttorch.as_tensor(
                {
                    'logit': {
                        'action_type': action_type,
                        'action_args': action_args
                    },
                    'value': value['pred']
                }
            )