File size: 19,561 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
from typing import Optional, Dict, Union, List
from functools import reduce
import operator
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from ding.torch_utils import ResFCBlock, ResBlock, Flatten, normed_linear, normed_conv2d
from ding.torch_utils.network.dreamer import Conv2dSame, DreamerLayerNorm
from ding.utils import SequenceType
def prod(iterable):
"""
Overview:
Product of all elements.(To be deprecated soon.) This function denifition is for supporting python version \
that under 3.8. In Python3.8 and larger, 'math.prod()' is recommended.
"""
return reduce(operator.mul, iterable, 1)
class ConvEncoder(nn.Module):
"""
Overview:
The Convolution Encoder is used to encode 2-dim image observations.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
obs_shape: SequenceType,
hidden_size_list: SequenceType = [32, 64, 64, 128],
activation: Optional[nn.Module] = nn.ReLU(),
kernel_size: SequenceType = [8, 4, 3],
stride: SequenceType = [4, 2, 1],
padding: Optional[SequenceType] = None,
layer_norm: Optional[bool] = False,
norm_type: Optional[str] = None
) -> None:
"""
Overview:
Initialize the ``Convolution Encoder`` according to the provided arguments.
Arguments:
- obs_shape (:obj:`SequenceType`): Sequence of ``in_channel``, plus one or more ``input size``.
- hidden_size_list (:obj:`SequenceType`): Sequence of ``hidden_size`` of subsequent conv layers \
and the final dense layer.
- activation (:obj:`nn.Module`): Type of activation to use in the conv ``layers`` and ``ResBlock``. \
Default is ``nn.ReLU()``.
- kernel_size (:obj:`SequenceType`): Sequence of ``kernel_size`` of subsequent conv layers.
- stride (:obj:`SequenceType`): Sequence of ``stride`` of subsequent conv layers.
- padding (:obj:`SequenceType`): Padding added to all four sides of the input for each conv layer. \
See ``nn.Conv2d`` for more details. Default is ``None``.
- layer_norm (:obj:`bool`): Whether to use ``DreamerLayerNorm``, which is kind of special trick \
proposed in DreamerV3.
- norm_type (:obj:`str`): Type of normalization to use. See ``ding.torch_utils.network.ResBlock`` \
for more details. Default is ``None``.
"""
super(ConvEncoder, self).__init__()
self.obs_shape = obs_shape
self.act = activation
self.hidden_size_list = hidden_size_list
if padding is None:
padding = [0 for _ in range(len(kernel_size))]
layers = []
input_size = obs_shape[0] # in_channel
for i in range(len(kernel_size)):
if layer_norm:
layers.append(
Conv2dSame(
in_channels=input_size,
out_channels=hidden_size_list[i],
kernel_size=(kernel_size[i], kernel_size[i]),
stride=(2, 2),
bias=False,
)
)
layers.append(DreamerLayerNorm(hidden_size_list[i]))
layers.append(self.act)
else:
layers.append(nn.Conv2d(input_size, hidden_size_list[i], kernel_size[i], stride[i], padding[i]))
layers.append(self.act)
input_size = hidden_size_list[i]
if len(self.hidden_size_list) >= len(kernel_size) + 2:
assert self.hidden_size_list[len(kernel_size) - 1] == self.hidden_size_list[
len(kernel_size)], "Please indicate the same hidden size between conv and res block"
assert len(
set(hidden_size_list[len(kernel_size):-1])
) <= 1, "Please indicate the same hidden size for res block parts"
for i in range(len(kernel_size), len(self.hidden_size_list) - 1):
layers.append(ResBlock(self.hidden_size_list[i - 1], activation=self.act, norm_type=norm_type))
layers.append(Flatten())
self.main = nn.Sequential(*layers)
flatten_size = self._get_flatten_size()
self.output_size = hidden_size_list[-1] # outside to use
self.mid = nn.Linear(flatten_size, hidden_size_list[-1])
def _get_flatten_size(self) -> int:
"""
Overview:
Get the encoding size after ``self.main`` to get the number of ``in-features`` to feed to ``nn.Linear``.
Returns:
- outputs (:obj:`torch.Tensor`): Size ``int`` Tensor representing the number of ``in-features``.
Shapes:
- outputs: :math:`(1,)`.
Examples:
>>> conv = ConvEncoder(
>>> obs_shape=(4, 84, 84),
>>> hidden_size_list=[32, 64, 64, 128],
>>> activation=nn.ReLU(),
>>> kernel_size=[8, 4, 3],
>>> stride=[4, 2, 1],
>>> padding=None,
>>> layer_norm=False,
>>> norm_type=None
>>> )
>>> flatten_size = conv._get_flatten_size()
"""
test_data = torch.randn(1, *self.obs_shape)
with torch.no_grad():
output = self.main(test_data)
return output.shape[1]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return output 1D embedding tensor of the env's 2D image observation.
Arguments:
- x (:obj:`torch.Tensor`): Raw 2D observation of the environment.
Returns:
- outputs (:obj:`torch.Tensor`): Output embedding tensor.
Shapes:
- x : :math:`(B, C, H, W)`, where ``B`` is batch size, ``C`` is channel, ``H`` is height, ``W`` is width.
- outputs: :math:`(B, N)`, where ``N = hidden_size_list[-1]`` .
Examples:
>>> conv = ConvEncoder(
>>> obs_shape=(4, 84, 84),
>>> hidden_size_list=[32, 64, 64, 128],
>>> activation=nn.ReLU(),
>>> kernel_size=[8, 4, 3],
>>> stride=[4, 2, 1],
>>> padding=None,
>>> layer_norm=False,
>>> norm_type=None
>>> )
>>> x = torch.randn(1, 4, 84, 84)
>>> output = conv(x)
"""
x = self.main(x)
x = self.mid(x)
return x
class FCEncoder(nn.Module):
"""
Overview:
The full connected encoder is used to encode 1-dim input variable.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
obs_shape: int,
hidden_size_list: SequenceType,
res_block: bool = False,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
dropout: Optional[float] = None
) -> None:
"""
Overview:
Initialize the FC Encoder according to arguments.
Arguments:
- obs_shape (:obj:`int`): Observation shape.
- hidden_size_list (:obj:`SequenceType`): Sequence of ``hidden_size`` of subsequent FC layers.
- res_block (:obj:`bool`): Whether use ``res_block``. Default is ``False``.
- activation (:obj:`nn.Module`): Type of activation to use in ``ResFCBlock``. Default is ``nn.ReLU()``.
- norm_type (:obj:`str`): Type of normalization to use. See ``ding.torch_utils.network.ResFCBlock`` \
for more details. Default is ``None``.
- dropout (:obj:`float`): Dropout rate of the dropout layer. If ``None`` then default no dropout layer.
"""
super(FCEncoder, self).__init__()
self.obs_shape = obs_shape
self.act = activation
self.init = nn.Linear(obs_shape, hidden_size_list[0])
if res_block:
assert len(set(hidden_size_list)) == 1, "Please indicate the same hidden size for res block parts"
if len(hidden_size_list) == 1:
self.main = ResFCBlock(hidden_size_list[0], activation=self.act, norm_type=norm_type, dropout=dropout)
else:
layers = []
for i in range(len(hidden_size_list)):
layers.append(
ResFCBlock(hidden_size_list[0], activation=self.act, norm_type=norm_type, dropout=dropout)
)
self.main = nn.Sequential(*layers)
else:
layers = []
for i in range(len(hidden_size_list) - 1):
layers.append(nn.Linear(hidden_size_list[i], hidden_size_list[i + 1]))
layers.append(self.act)
if dropout is not None:
layers.append(nn.Dropout(dropout))
self.main = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return output embedding tensor of the env observation.
Arguments:
- x (:obj:`torch.Tensor`): Env raw observation.
Returns:
- outputs (:obj:`torch.Tensor`): Output embedding tensor.
Shapes:
- x : :math:`(B, M)`, where ``M = obs_shape``.
- outputs: :math:`(B, N)`, where ``N = hidden_size_list[-1]``.
Examples:
>>> fc = FCEncoder(
>>> obs_shape=4,
>>> hidden_size_list=[32, 64, 64, 128],
>>> activation=nn.ReLU(),
>>> norm_type=None,
>>> dropout=None
>>> )
>>> x = torch.randn(1, 4)
>>> output = fc(x)
"""
x = self.act(self.init(x))
x = self.main(x)
return x
class StructEncoder(nn.Module):
def __init__(self, obs_shape: Dict[str, Union[int, List[int]]]) -> None:
super(StructEncoder, self).__init__()
# TODO concrete implementation
raise NotImplementedError
class IMPALACnnResidualBlock(nn.Module):
"""
Overview:
This CNN encoder residual block is residual basic block used in IMPALA algorithm,
which preserves the channel number and shape.
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
https://arxiv.org/pdf/1802.01561.pdf
Interfaces:
``__init__``, ``forward``.
"""
def __init__(self, in_channnel: int, scale: float = 1, batch_norm: bool = False):
"""
Overview:
Initialize the IMPALA CNN residual block according to arguments.
Arguments:
- in_channnel (:obj:`int`): Channel number of input features.
- scale (:obj:`float`): Scale of module, defaults to 1.
- batch_norm (:obj:`bool`): Whether use batch normalization, defaults to False.
"""
super().__init__()
self.in_channnel = in_channnel
self.batch_norm = batch_norm
s = math.sqrt(scale)
self.conv0 = normed_conv2d(self.in_channnel, self.in_channnel, 3, padding=1, scale=s)
self.conv1 = normed_conv2d(self.in_channnel, self.in_channnel, 3, padding=1, scale=s)
if self.batch_norm:
self.bn0 = nn.BatchNorm2d(self.in_channnel)
self.bn1 = nn.BatchNorm2d(self.in_channnel)
def residual(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return output tensor of the residual block, keep the shape and channel number unchanged.
The inplace of activation function should be False for the first relu,
so that it does not change the origin input tensor of the residual block.
Arguments:
- x (:obj:`torch.Tensor`): Input tensor.
Returns:
- output (:obj:`torch.Tensor`): Output tensor.
"""
if self.batch_norm:
x = self.bn0(x)
x = F.relu(x, inplace=False)
x = self.conv0(x)
if self.batch_norm:
x = self.bn1(x)
x = F.relu(x, inplace=True)
x = self.conv1(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return output tensor of the residual block, keep the shape and channel number unchanged.
Arguments:
- x (:obj:`torch.Tensor`): Input tensor.
Returns:
- output (:obj:`torch.Tensor`): Output tensor.
Examples:
>>> block = IMPALACnnResidualBlock(16)
>>> x = torch.randn(1, 16, 84, 84)
>>> output = block(x)
"""
return x + self.residual(x)
class IMPALACnnDownStack(nn.Module):
"""
Overview:
Downsampling stack of CNN encoder used in IMPALA algorithmn.
Every IMPALACnnDownStack consists n IMPALACnnResidualBlock,
which reduces the spatial size by 2 with maxpooling.
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
https://arxiv.org/pdf/1802.01561.pdf
Interfaces:
``__init__``, ``forward``.
"""
def __init__(self, in_channnel, nblock, out_channel, scale=1, pool=True, **kwargs):
"""
Overview:
Initialize every impala cnn block of the Impala Cnn Encoder.
Arguments:
- in_channnel (:obj:`int`): Channel number of input features.
- nblock (:obj:`int`): Residual Block number in each block.
- out_channel (:obj:`int`): Channel number of output features.
- scale (:obj:`float`): Scale of the module.
- pool (:obj:`bool`): Whether to use maxing pooling after first conv layer.
"""
super().__init__()
self.in_channnel = in_channnel
self.out_channel = out_channel
self.pool = pool
self.firstconv = normed_conv2d(in_channnel, out_channel, 3, padding=1)
s = scale / math.sqrt(nblock)
self.blocks = nn.ModuleList([IMPALACnnResidualBlock(out_channel, scale=s, **kwargs) for _ in range(nblock)])
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return output tensor of the downsampling stack. The output shape is different from input shape. And you \
can refer to the ``output_shape`` method to get the output shape.
Arguments:
- x (:obj:`torch.Tensor`): Input tensor.
Returns:
- output (:obj:`torch.Tensor`): Output tensor.
Examples:
>>> stack = IMPALACnnDownStack(16, 2, 32)
>>> x = torch.randn(1, 16, 84, 84)
>>> output = stack(x)
"""
x = self.firstconv(x)
if self.pool:
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
for block in self.blocks:
x = block(x)
return x
def output_shape(self, inshape: tuple) -> tuple:
"""
Overview:
Calculate the output shape of the downsampling stack according to input shape and related arguments.
Arguments:
- inshape (:obj:`tuple`): Input shape.
Returns:
- output_shape (:obj:`tuple`): Output shape.
Shapes:
- inshape (:obj:`tuple`): :math:`(C, H, W)`, where C is channel number, H is height and W is width.
- output_shape (:obj:`tuple`): :math:`(C, H, W)`, where C is channel number, H is height and W is width.
Examples:
>>> stack = IMPALACnnDownStack(16, 2, 32)
>>> inshape = (16, 84, 84)
>>> output_shape = stack.output_shape(inshape)
"""
c, h, w = inshape
assert c == self.in_channnel
if self.pool:
return (self.out_channel, (h + 1) // 2, (w + 1) // 2)
else:
return (self.out_channel, h, w)
class IMPALAConvEncoder(nn.Module):
"""
Overview:
IMPALA CNN encoder, which is used in IMPALA algorithm.
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures, \
https://arxiv.org/pdf/1802.01561.pdf,
Interface:
``__init__``, ``forward``, ``output_shape``.
"""
name = "IMPALAConvEncoder" # put it here to preserve pickle compat
def __init__(
self,
obs_shape: SequenceType,
channels: SequenceType = (16, 32, 32),
outsize: int = 256,
scale_ob: float = 255.0,
nblock: int = 2,
final_relu: bool = True,
**kwargs
) -> None:
"""
Overview:
Initialize the IMPALA CNN encoder according to arguments.
Arguments:
- obs_shape (:obj:`SequenceType`): 2D image observation shape.
- channels (:obj:`SequenceType`): The channel number of a series of impala cnn blocks. \
Each element of the sequence is the output channel number of a impala cnn block.
- outsize (:obj:`int`): The output size the final linear layer, which means the dimension of the \
1D embedding vector.
- scale_ob (:obj:`float`): The scale of the input observation, which is used to normalize the input \
observation, such as dividing 255.0 for the raw image observation.
- nblock (:obj:`int`): The number of Residual Block in each block.
- final_relu (:obj:`bool`): Whether to use ReLU activation in the final output of encoder.
- kwargs (:obj:`Dict[str, Any]`): Other arguments for ``IMPALACnnDownStack``.
"""
super().__init__()
self.scale_ob = scale_ob
c, h, w = obs_shape
curshape = (c, h, w)
s = 1 / math.sqrt(len(channels)) # per stack scale
self.stacks = nn.ModuleList()
for out_channel in channels:
stack = IMPALACnnDownStack(curshape[0], nblock=nblock, out_channel=out_channel, scale=s, **kwargs)
self.stacks.append(stack)
curshape = stack.output_shape(curshape)
self.dense = normed_linear(prod(curshape), outsize, scale=1.4)
self.outsize = outsize
self.final_relu = final_relu
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return the 1D embedding vector of the input 2D observation.
Arguments:
- x (:obj:`torch.Tensor`): Input 2D observation tensor.
Returns:
- output (:obj:`torch.Tensor`): Output 1D embedding vector.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel number, H is height \
and W is width.
- output (:obj:`torch.Tensor`): :math:`(B, outsize)`, where B is batch size.
Examples:
>>> encoder = IMPALAConvEncoder(
>>> obs_shape=(4, 84, 84),
>>> channels=(16, 32, 32),
>>> outsize=256,
>>> scale_ob=255.0,
>>> nblock=2,
>>> final_relu=True,
>>> )
>>> x = torch.randn(1, 4, 84, 84)
>>> output = encoder(x)
"""
x = x / self.scale_ob
for (i, layer) in enumerate(self.stacks):
x = layer(x)
*batch_shape, h, w, c = x.shape
x = x.reshape((*batch_shape, h * w * c))
x = F.relu(x)
x = self.dense(x)
if self.final_relu:
x = torch.relu(x)
return x
|