File size: 10,100 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from typing import Union, Optional, Dict
import torch
import torch.nn as nn
from easydict import EasyDict

from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, \
        MultiHead, RegressionHead, ReparameterizationHead


@MODEL_REGISTRY.register('discrete_bc')
class DiscreteBC(nn.Module):
    """
    Overview:
        The DiscreteBC network.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
        self,
        obs_shape: Union[int, SequenceType],
        action_shape: Union[int, SequenceType],
        encoder_hidden_size_list: SequenceType = [128, 128, 64],
        dueling: bool = True,
        head_hidden_size: Optional[int] = None,
        head_layer_num: int = 1,
        activation: Optional[nn.Module] = nn.ReLU(),
        norm_type: Optional[str] = None,
        strides: Optional[list] = None,
    ) -> None:
        """
        Overview:
            Init the DiscreteBC (encoder + head) Model according to input arguments.
        Arguments:
            - obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
            - action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
            - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
                the last element must match ``head_hidden_size``.
            - dueling (:obj:`dueling`): Whether choose ``DuelingHead`` or ``DiscreteHead(default)``.
            - head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network.
            - head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output
            - activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
                if ``None`` then default set it to ``nn.ReLU()``.
            - norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
                ``ding.torch_utils.fc_block`` for more details.
            - strides (:obj:`Optional[list]`): The strides for each convolution layers, such as [2, 2, 2]. The length \
                of this argument should be the same as ``encoder_hidden_size_list``.
        """
        super(DiscreteBC, self).__init__()
        # For compatibility: 1, (1, ), [4, 32, 32]
        obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
        if head_hidden_size is None:
            head_hidden_size = encoder_hidden_size_list[-1]
        # FC Encoder
        if isinstance(obs_shape, int) or len(obs_shape) == 1:
            self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
        # Conv Encoder
        elif len(obs_shape) == 3:
            if not strides:
                self.encoder = ConvEncoder(
                    obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type
                )
            else:
                self.encoder = ConvEncoder(
                    obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type, stride=strides
                )
        else:
            raise RuntimeError(
                "not support obs_shape for pre-defined encoder: {}, please customize your own BC".format(obs_shape)
            )
        # Head Type
        if dueling:
            head_cls = DuelingHead
        else:
            head_cls = DiscreteHead
        multi_head = not isinstance(action_shape, int)
        if multi_head:
            self.head = MultiHead(
                head_cls,
                head_hidden_size,
                action_shape,
                layer_num=head_layer_num,
                activation=activation,
                norm_type=norm_type
            )
        else:
            self.head = head_cls(
                head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type
            )

    def forward(self, x: torch.Tensor) -> Dict:
        """
        Overview:
            DiscreteBC forward computation graph, input observation tensor to predict q_value.
        Arguments:
            - x (:obj:`torch.Tensor`): Observation inputs
        Returns:
            - outputs (:obj:`Dict`): DiscreteBC forward outputs, such as q_value.
        ReturnsKeys:
            - logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension.
        Shapes:
            - x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
            - logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
        Examples:
            >>> model = DiscreteBC(32, 6)  # arguments: 'obs_shape' and 'action_shape'
            >>> inputs = torch.randn(4, 32)
            >>> outputs = model(inputs)
            >>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6])
        """
        x = self.encoder(x)
        x = self.head(x)
        return x


@MODEL_REGISTRY.register('continuous_bc')
class ContinuousBC(nn.Module):
    """
    Overview:
        The ContinuousBC network.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
            self,
            obs_shape: Union[int, SequenceType],
            action_shape: Union[int, SequenceType, EasyDict],
            action_space: str,
            actor_head_hidden_size: int = 64,
            actor_head_layer_num: int = 1,
            activation: Optional[nn.Module] = nn.ReLU(),
            norm_type: Optional[str] = None,
    ) -> None:
        """
        Overview:
            Initialize the ContinuousBC Model according to input arguments.
        Arguments:
            - obs_shape (:obj:`Union[int, SequenceType]`): Observation's shape, such as 128, (156, ).
            - action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's shape, such as 4, (3, ), \
                EasyDict({'action_type_shape': 3, 'action_args_shape': 4}).
            - action_space (:obj:`str`): The type of action space, \
                including [``regression``, ``reparameterization``].
            - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor head.
            - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
                for actor head.
            - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` \
                after each FC layer, if ``None`` then default set to ``nn.ReLU()``.
            - norm_type (:obj:`Optional[str]`): The type of normalization to after network layer (FC, Conv), \
                see ``ding.torch_utils.network`` for more details.
        """
        super(ContinuousBC, self).__init__()
        obs_shape: int = squeeze(obs_shape)
        action_shape = squeeze(action_shape)
        self.action_shape = action_shape
        self.action_space = action_space
        assert self.action_space in ['regression', 'reparameterization']
        if self.action_space == 'regression':
            self.actor = nn.Sequential(
                nn.Linear(obs_shape, actor_head_hidden_size), activation,
                RegressionHead(
                    actor_head_hidden_size,
                    action_shape,
                    actor_head_layer_num,
                    final_tanh=True,
                    activation=activation,
                    norm_type=norm_type
                )
            )
        elif self.action_space == 'reparameterization':
            self.actor = nn.Sequential(
                nn.Linear(obs_shape, actor_head_hidden_size), activation,
                ReparameterizationHead(
                    actor_head_hidden_size,
                    action_shape,
                    actor_head_layer_num,
                    sigma_type='conditioned',
                    activation=activation,
                    norm_type=norm_type
                )
            )

    def forward(self, inputs: Union[torch.Tensor, Dict[str, torch.Tensor]]) -> Dict:
        """
        Overview:
            The unique execution (forward) method of ContinuousBC.
        Arguments:
            - inputs (:obj:`torch.Tensor`): Observation data, defaults to tensor.
        Returns:
            - output (:obj:`Dict`): Output dict data, including different key-values among distinct action_space.
        ReturnsKeys:
            - action (:obj:`torch.Tensor`): action output of actor network, \
                with shape :math:`(B, action_shape)`.
            - logit (:obj:`List[torch.Tensor]`): reparameterized action output of actor network, \
                with shape :math:`(B, action_shape)`.
        Shapes:
            - inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
            - action (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
            - logit (:obj:`List[torch.FloatTensor]`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
        Examples (Regression):
            >>> model = ContinuousBC(32, 6, action_space='regression')
            >>> inputs = torch.randn(4, 32)
            >>> outputs = model(inputs)
            >>> assert isinstance(outputs, dict) and outputs['action'].shape == torch.Size([4, 6])
        Examples (Reparameterization):
            >>> model = ContinuousBC(32, 6, action_space='reparameterization')
            >>> inputs = torch.randn(4, 32)
            >>> outputs = model(inputs)
            >>> assert isinstance(outputs, dict) and outputs['logit'][0].shape == torch.Size([4, 6])
            >>> assert outputs['logit'][1].shape == torch.Size([4, 6])
        """
        if self.action_space == 'regression':
            x = self.actor(inputs)
            return {'action': x['pred']}
        elif self.action_space == 'reparameterization':
            x = self.actor(inputs)
            return {'logit': [x['mu'], x['sigma']]}