File size: 18,587 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
"""
this extremely minimal Decision Transformer model is based on
the following causal transformer (GPT) implementation:

Misha Laskin's tweet:
https://twitter.com/MishaLaskin/status/1481767788775628801?cxt=HHwWgoCzmYD9pZApAAAA

and its corresponding notebook:
https://colab.research.google.com/drive/1NUBqyboDcGte5qAJKOl8gaJC28V_73Iv?usp=sharing

** the above colab notebook has a bug while applying masked_fill
which is fixed in the following code
"""

import math
from typing import Union, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import SequenceType


class MaskedCausalAttention(nn.Module):
    """
    Overview:
        The implementation of masked causal attention in decision transformer. The input of this module is a sequence \
        of several tokens. For the calculated hidden embedding for the i-th token, it is only related the 0 to i-1 \
        input tokens by applying a mask to the attention map. Thus, this module is called masked-causal attention.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, h_dim: int, max_T: int, n_heads: int, drop_p: float) -> None:
        """
        Overview:
            Initialize the MaskedCausalAttention Model according to input arguments.
        Arguments:
            - h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
            - max_T (:obj:`int`): The max context length of the attention, such as 6.
            - n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
            - drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
        """
        super().__init__()

        self.n_heads = n_heads
        self.max_T = max_T

        self.q_net = nn.Linear(h_dim, h_dim)
        self.k_net = nn.Linear(h_dim, h_dim)
        self.v_net = nn.Linear(h_dim, h_dim)

        self.proj_net = nn.Linear(h_dim, h_dim)

        self.att_drop = nn.Dropout(drop_p)
        self.proj_drop = nn.Dropout(drop_p)

        ones = torch.ones((max_T, max_T))
        mask = torch.tril(ones).view(1, 1, max_T, max_T)

        # register buffer makes sure mask does not get updated
        # during backpropagation
        self.register_buffer('mask', mask)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Overview:
            MaskedCausalAttention forward computation graph, input a sequence tensor \
            and return a tensor with the same shape.
        Arguments:
            - x (:obj:`torch.Tensor`): The input tensor.
        Returns:
            - out (:obj:`torch.Tensor`): Output tensor, the shape is the same as the input.
        Examples:
            >>> inputs = torch.randn(2, 4, 64)
            >>> model = MaskedCausalAttention(64, 5, 4, 0.1)
            >>> outputs = model(inputs)
            >>> assert outputs.shape == torch.Size([2, 4, 64])
        """
        B, T, C = x.shape  # batch size, seq length, h_dim * n_heads

        N, D = self.n_heads, C // self.n_heads  # N = num heads, D = attention dim

        # rearrange q, k, v as (B, N, T, D)
        q = self.q_net(x).view(B, T, N, D).transpose(1, 2)
        k = self.k_net(x).view(B, T, N, D).transpose(1, 2)
        v = self.v_net(x).view(B, T, N, D).transpose(1, 2)

        # weights (B, N, T, T)
        weights = q @ k.transpose(2, 3) / math.sqrt(D)
        # causal mask applied to weights
        weights = weights.masked_fill(self.mask[..., :T, :T] == 0, float('-inf'))
        # normalize weights, all -inf -> 0 after softmax
        normalized_weights = F.softmax(weights, dim=-1)

        # attention (B, N, T, D)
        attention = self.att_drop(normalized_weights @ v)

        # gather heads and project (B, N, T, D) -> (B, T, N*D)
        attention = attention.transpose(1, 2).contiguous().view(B, T, N * D)

        out = self.proj_drop(self.proj_net(attention))
        return out


class Block(nn.Module):
    """
    Overview:
        The implementation of a transformer block in decision transformer.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, h_dim: int, max_T: int, n_heads: int, drop_p: float) -> None:
        """
        Overview:
            Initialize the Block Model according to input arguments.
        Arguments:
            - h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
            - max_T (:obj:`int`): The max context length of the attention, such as 6.
            - n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
            - drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
        """
        super().__init__()
        self.attention = MaskedCausalAttention(h_dim, max_T, n_heads, drop_p)
        self.mlp = nn.Sequential(
            nn.Linear(h_dim, 4 * h_dim),
            nn.GELU(),
            nn.Linear(4 * h_dim, h_dim),
            nn.Dropout(drop_p),
        )
        self.ln1 = nn.LayerNorm(h_dim)
        self.ln2 = nn.LayerNorm(h_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Overview:
            Forward computation graph of the decision transformer block, input a sequence tensor \
            and return a tensor with the same shape.
        Arguments:
            - x (:obj:`torch.Tensor`): The input tensor.
        Returns:
            - output (:obj:`torch.Tensor`): Output tensor, the shape is the same as the input.
        Examples:
            >>> inputs = torch.randn(2, 4, 64)
            >>> model = Block(64, 5, 4, 0.1)
            >>> outputs = model(inputs)
            >>> outputs.shape == torch.Size([2, 4, 64])
        """
        # Attention -> LayerNorm -> MLP -> LayerNorm
        x = x + self.attention(x)  # residual
        x = self.ln1(x)
        x = x + self.mlp(x)  # residual
        x = self.ln2(x)
        # x = x + self.attention(self.ln1(x))
        # x = x + self.mlp(self.ln2(x))
        return x


class DecisionTransformer(nn.Module):
    """
    Overview:
        The implementation of decision transformer.
    Interfaces:
        ``__init__``, ``forward``, ``configure_optimizers``
    """

    def __init__(
        self,
        state_dim: Union[int, SequenceType],
        act_dim: int,
        n_blocks: int,
        h_dim: int,
        context_len: int,
        n_heads: int,
        drop_p: float,
        max_timestep: int = 4096,
        state_encoder: Optional[nn.Module] = None,
        continuous: bool = False
    ):
        """
        Overview:
            Initialize the DecisionTransformer Model according to input arguments.
        Arguments:
            - obs_shape (:obj:`Union[int, SequenceType]`): Dimension of state, such as 128 or (4, 84, 84).
            - act_dim (:obj:`int`): The dimension of actions, such as 6.
            - n_blocks (:obj:`int`): The number of transformer blocks in the decision transformer, such as 3.
            - h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
            - context_len (:obj:`int`): The max context length of the attention, such as 6.
            - n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
            - drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
            - max_timestep (:obj:`int`): The max length of the total sequence, defaults to be 4096.
            - state_encoder (:obj:`Optional[nn.Module]`): The encoder to pre-process the given input. If it is set to \
                None, the raw state will be pushed into the transformer.
            - continuous (:obj:`bool`): Whether the action space is continuous, defaults to be ``False``.
        """
        super().__init__()

        self.state_dim = state_dim
        self.act_dim = act_dim
        self.h_dim = h_dim

        # transformer blocks
        input_seq_len = 3 * context_len

        # projection heads (project to embedding)
        self.embed_ln = nn.LayerNorm(h_dim)
        self.embed_timestep = nn.Embedding(max_timestep, h_dim)
        self.drop = nn.Dropout(drop_p)

        self.pos_emb = nn.Parameter(torch.zeros(1, input_seq_len + 1, self.h_dim))
        self.global_pos_emb = nn.Parameter(torch.zeros(1, max_timestep + 1, self.h_dim))

        if state_encoder is None:
            self.state_encoder = None
            blocks = [Block(h_dim, input_seq_len, n_heads, drop_p) for _ in range(n_blocks)]
            self.embed_rtg = torch.nn.Linear(1, h_dim)
            self.embed_state = torch.nn.Linear(state_dim, h_dim)
            self.predict_rtg = torch.nn.Linear(h_dim, 1)
            self.predict_state = torch.nn.Linear(h_dim, state_dim)
            if continuous:
                # continuous actions
                self.embed_action = torch.nn.Linear(act_dim, h_dim)
                use_action_tanh = True  # True for continuous actions
            else:
                # discrete actions
                self.embed_action = torch.nn.Embedding(act_dim, h_dim)
                use_action_tanh = False  # False for discrete actions
            self.predict_action = nn.Sequential(
                *([nn.Linear(h_dim, act_dim)] + ([nn.Tanh()] if use_action_tanh else []))
            )
        else:
            blocks = [Block(h_dim, input_seq_len + 1, n_heads, drop_p) for _ in range(n_blocks)]
            self.state_encoder = state_encoder
            self.embed_rtg = nn.Sequential(nn.Linear(1, h_dim), nn.Tanh())
            self.head = nn.Linear(h_dim, act_dim, bias=False)
            self.embed_action = nn.Sequential(nn.Embedding(act_dim, h_dim), nn.Tanh())
        self.transformer = nn.Sequential(*blocks)

    def forward(
            self,
            timesteps: torch.Tensor,
            states: torch.Tensor,
            actions: torch.Tensor,
            returns_to_go: torch.Tensor,
            tar: Optional[int] = None
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Overview:
            Forward computation graph of the decision transformer, input a sequence tensor \
            and return a tensor with the same shape.
        Arguments:
            - timesteps (:obj:`torch.Tensor`): The timestep for input sequence.
            - states (:obj:`torch.Tensor`): The sequence of states.
            - actions (:obj:`torch.Tensor`): The sequence of actions.
            - returns_to_go (:obj:`torch.Tensor`): The sequence of return-to-go.
            - tar (:obj:`Optional[int]`): Whether to predict action, regardless of index.
        Returns:
            - output (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Output contains three tensors, \
            they are correspondingly the predicted states, predicted actions and predicted return-to-go.
        Examples:
            >>> B, T = 4, 6
            >>> state_dim = 3
            >>> act_dim = 2
            >>> DT_model = DecisionTransformer(\
                state_dim=state_dim,\
                act_dim=act_dim,\
                n_blocks=3,\
                h_dim=8,\
                context_len=T,\
                n_heads=2,\
                drop_p=0.1,\
            )
            >>> timesteps = torch.randint(0, 100, [B, 3 * T - 1, 1], dtype=torch.long)  # B x T
            >>> states = torch.randn([B, T, state_dim])  # B x T x state_dim
            >>> actions = torch.randint(0, act_dim, [B, T, 1])
            >>> action_target = torch.randint(0, act_dim, [B, T, 1])
            >>> returns_to_go_sample = torch.tensor([1, 0.8, 0.6, 0.4, 0.2, 0.]).repeat([B, 1]).unsqueeze(-1).float()
            >>> traj_mask = torch.ones([B, T], dtype=torch.long)  # B x T
            >>> actions = actions.squeeze(-1)
            >>> state_preds, action_preds, return_preds = DT_model.forward(\
                timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go\
            )
            >>> assert state_preds.shape == torch.Size([B, T, state_dim])
            >>> assert return_preds.shape == torch.Size([B, T, 1])
            >>> assert action_preds.shape == torch.Size([B, T, act_dim])
        """
        B, T = states.shape[0], states.shape[1]
        if self.state_encoder is None:
            time_embeddings = self.embed_timestep(timesteps)

            # time embeddings are treated similar to positional embeddings
            state_embeddings = self.embed_state(states) + time_embeddings
            action_embeddings = self.embed_action(actions) + time_embeddings
            returns_embeddings = self.embed_rtg(returns_to_go) + time_embeddings

            # stack rtg, states and actions and reshape sequence as
            # (r_0, s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2 ...)
            t_p = torch.stack((returns_embeddings, state_embeddings, action_embeddings),
                              dim=1).permute(0, 2, 1, 3).reshape(B, 3 * T, self.h_dim)
            h = self.embed_ln(t_p)
            # transformer and prediction
            h = self.transformer(h)
            # get h reshaped such that its size = (B x 3 x T x h_dim) and
            # h[:, 0, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t
            # h[:, 1, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t, s_t
            # h[:, 2, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t, s_t, a_t
            # that is, for each timestep (t) we have 3 output embeddings from the transformer,
            # each conditioned on all previous timesteps plus
            # the 3 input variables at that timestep (r_t, s_t, a_t) in sequence.
            h = h.reshape(B, T, 3, self.h_dim).permute(0, 2, 1, 3)

            return_preds = self.predict_rtg(h[:, 2])  # predict next rtg given r, s, a
            state_preds = self.predict_state(h[:, 2])  # predict next state given r, s, a
            action_preds = self.predict_action(h[:, 1])  # predict action given r, s
        else:
            state_embeddings = self.state_encoder(
                states.reshape(-1, *self.state_dim).type(torch.float32).contiguous()
            )  # (batch * block_size, h_dim)
            state_embeddings = state_embeddings.reshape(B, T, self.h_dim)  # (batch, block_size, h_dim)
            returns_embeddings = self.embed_rtg(returns_to_go.type(torch.float32))
            action_embeddings = self.embed_action(actions.type(torch.long).squeeze(-1))  # (batch, block_size, h_dim)

            token_embeddings = torch.zeros(
                (B, T * 3 - int(tar is None), self.h_dim), dtype=torch.float32, device=state_embeddings.device
            )
            token_embeddings[:, ::3, :] = returns_embeddings
            token_embeddings[:, 1::3, :] = state_embeddings
            token_embeddings[:, 2::3, :] = action_embeddings[:, -T + int(tar is None):, :]

            all_global_pos_emb = torch.repeat_interleave(
                self.global_pos_emb, B, dim=0
            )  # batch_size, traj_length, h_dim

            position_embeddings = torch.gather(
                all_global_pos_emb, 1, torch.repeat_interleave(timesteps, self.h_dim, dim=-1)
            ) + self.pos_emb[:, :token_embeddings.shape[1], :]

            t_p = token_embeddings + position_embeddings

            h = self.drop(t_p)
            h = self.transformer(h)
            h = self.embed_ln(h)
            logits = self.head(h)

            return_preds = None
            state_preds = None
            action_preds = logits[:, 1::3, :]  # only keep predictions from state_embeddings

        return state_preds, action_preds, return_preds

    def configure_optimizers(
            self, weight_decay: float, learning_rate: float, betas: Tuple[float, float] = (0.9, 0.95)
    ) -> torch.optim.Optimizer:
        """
        Overview:
            This function returns an optimizer given the input arguments. \
            We are separating out all parameters of the model into two buckets: those that will experience \
            weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
        Arguments:
            - weight_decay (:obj:`float`): The weigh decay of the optimizer.
            - learning_rate (:obj:`float`): The learning rate of the optimizer.
            - betas (:obj:`Tuple[float, float]`): The betas for Adam optimizer.
        Outputs:
            - optimizer (:obj:`torch.optim.Optimizer`): The desired optimizer.
        """

        # separate out all parameters to those that will and won't experience regularizing weight decay
        decay = set()
        no_decay = set()
        # whitelist_weight_modules = (torch.nn.Linear, )
        whitelist_weight_modules = (torch.nn.Linear, torch.nn.Conv2d)
        blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
        for mn, m in self.named_modules():
            for pn, p in m.named_parameters():
                fpn = '%s.%s' % (mn, pn) if mn else pn  # full param name

                if pn.endswith('bias'):
                    # all biases will not be decayed
                    no_decay.add(fpn)
                elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
                    # weights of whitelist modules will be weight decayed
                    decay.add(fpn)
                elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
                    # weights of blacklist modules will NOT be weight decayed
                    no_decay.add(fpn)

        # special case the position embedding parameter in the root GPT module as not decayed
        no_decay.add('pos_emb')
        no_decay.add('global_pos_emb')

        # validate that we considered every parameter
        param_dict = {pn: p for pn, p in self.named_parameters()}
        inter_params = decay & no_decay
        union_params = decay | no_decay
        assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
        assert len(param_dict.keys() - union_params) == 0,\
            "parameters %s were not separated into either decay/no_decay set!" \
            % (str(param_dict.keys() - union_params), )

        # create the pytorch optimizer object
        optim_groups = [
            {
                "params": [param_dict[pn] for pn in sorted(list(decay))],
                "weight_decay": weight_decay
            },
            {
                "params": [param_dict[pn] for pn in sorted(list(no_decay))],
                "weight_decay": 0.0
            },
        ]
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas)
        return optimizer