File size: 18,587 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
this extremely minimal Decision Transformer model is based on
the following causal transformer (GPT) implementation:
Misha Laskin's tweet:
https://twitter.com/MishaLaskin/status/1481767788775628801?cxt=HHwWgoCzmYD9pZApAAAA
and its corresponding notebook:
https://colab.research.google.com/drive/1NUBqyboDcGte5qAJKOl8gaJC28V_73Iv?usp=sharing
** the above colab notebook has a bug while applying masked_fill
which is fixed in the following code
"""
import math
from typing import Union, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import SequenceType
class MaskedCausalAttention(nn.Module):
"""
Overview:
The implementation of masked causal attention in decision transformer. The input of this module is a sequence \
of several tokens. For the calculated hidden embedding for the i-th token, it is only related the 0 to i-1 \
input tokens by applying a mask to the attention map. Thus, this module is called masked-causal attention.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, h_dim: int, max_T: int, n_heads: int, drop_p: float) -> None:
"""
Overview:
Initialize the MaskedCausalAttention Model according to input arguments.
Arguments:
- h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
- max_T (:obj:`int`): The max context length of the attention, such as 6.
- n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
- drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
"""
super().__init__()
self.n_heads = n_heads
self.max_T = max_T
self.q_net = nn.Linear(h_dim, h_dim)
self.k_net = nn.Linear(h_dim, h_dim)
self.v_net = nn.Linear(h_dim, h_dim)
self.proj_net = nn.Linear(h_dim, h_dim)
self.att_drop = nn.Dropout(drop_p)
self.proj_drop = nn.Dropout(drop_p)
ones = torch.ones((max_T, max_T))
mask = torch.tril(ones).view(1, 1, max_T, max_T)
# register buffer makes sure mask does not get updated
# during backpropagation
self.register_buffer('mask', mask)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
MaskedCausalAttention forward computation graph, input a sequence tensor \
and return a tensor with the same shape.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- out (:obj:`torch.Tensor`): Output tensor, the shape is the same as the input.
Examples:
>>> inputs = torch.randn(2, 4, 64)
>>> model = MaskedCausalAttention(64, 5, 4, 0.1)
>>> outputs = model(inputs)
>>> assert outputs.shape == torch.Size([2, 4, 64])
"""
B, T, C = x.shape # batch size, seq length, h_dim * n_heads
N, D = self.n_heads, C // self.n_heads # N = num heads, D = attention dim
# rearrange q, k, v as (B, N, T, D)
q = self.q_net(x).view(B, T, N, D).transpose(1, 2)
k = self.k_net(x).view(B, T, N, D).transpose(1, 2)
v = self.v_net(x).view(B, T, N, D).transpose(1, 2)
# weights (B, N, T, T)
weights = q @ k.transpose(2, 3) / math.sqrt(D)
# causal mask applied to weights
weights = weights.masked_fill(self.mask[..., :T, :T] == 0, float('-inf'))
# normalize weights, all -inf -> 0 after softmax
normalized_weights = F.softmax(weights, dim=-1)
# attention (B, N, T, D)
attention = self.att_drop(normalized_weights @ v)
# gather heads and project (B, N, T, D) -> (B, T, N*D)
attention = attention.transpose(1, 2).contiguous().view(B, T, N * D)
out = self.proj_drop(self.proj_net(attention))
return out
class Block(nn.Module):
"""
Overview:
The implementation of a transformer block in decision transformer.
Interfaces:
``__init__``, ``forward``
"""
def __init__(self, h_dim: int, max_T: int, n_heads: int, drop_p: float) -> None:
"""
Overview:
Initialize the Block Model according to input arguments.
Arguments:
- h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
- max_T (:obj:`int`): The max context length of the attention, such as 6.
- n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
- drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
"""
super().__init__()
self.attention = MaskedCausalAttention(h_dim, max_T, n_heads, drop_p)
self.mlp = nn.Sequential(
nn.Linear(h_dim, 4 * h_dim),
nn.GELU(),
nn.Linear(4 * h_dim, h_dim),
nn.Dropout(drop_p),
)
self.ln1 = nn.LayerNorm(h_dim)
self.ln2 = nn.LayerNorm(h_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Forward computation graph of the decision transformer block, input a sequence tensor \
and return a tensor with the same shape.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- output (:obj:`torch.Tensor`): Output tensor, the shape is the same as the input.
Examples:
>>> inputs = torch.randn(2, 4, 64)
>>> model = Block(64, 5, 4, 0.1)
>>> outputs = model(inputs)
>>> outputs.shape == torch.Size([2, 4, 64])
"""
# Attention -> LayerNorm -> MLP -> LayerNorm
x = x + self.attention(x) # residual
x = self.ln1(x)
x = x + self.mlp(x) # residual
x = self.ln2(x)
# x = x + self.attention(self.ln1(x))
# x = x + self.mlp(self.ln2(x))
return x
class DecisionTransformer(nn.Module):
"""
Overview:
The implementation of decision transformer.
Interfaces:
``__init__``, ``forward``, ``configure_optimizers``
"""
def __init__(
self,
state_dim: Union[int, SequenceType],
act_dim: int,
n_blocks: int,
h_dim: int,
context_len: int,
n_heads: int,
drop_p: float,
max_timestep: int = 4096,
state_encoder: Optional[nn.Module] = None,
continuous: bool = False
):
"""
Overview:
Initialize the DecisionTransformer Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Dimension of state, such as 128 or (4, 84, 84).
- act_dim (:obj:`int`): The dimension of actions, such as 6.
- n_blocks (:obj:`int`): The number of transformer blocks in the decision transformer, such as 3.
- h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
- context_len (:obj:`int`): The max context length of the attention, such as 6.
- n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
- drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
- max_timestep (:obj:`int`): The max length of the total sequence, defaults to be 4096.
- state_encoder (:obj:`Optional[nn.Module]`): The encoder to pre-process the given input. If it is set to \
None, the raw state will be pushed into the transformer.
- continuous (:obj:`bool`): Whether the action space is continuous, defaults to be ``False``.
"""
super().__init__()
self.state_dim = state_dim
self.act_dim = act_dim
self.h_dim = h_dim
# transformer blocks
input_seq_len = 3 * context_len
# projection heads (project to embedding)
self.embed_ln = nn.LayerNorm(h_dim)
self.embed_timestep = nn.Embedding(max_timestep, h_dim)
self.drop = nn.Dropout(drop_p)
self.pos_emb = nn.Parameter(torch.zeros(1, input_seq_len + 1, self.h_dim))
self.global_pos_emb = nn.Parameter(torch.zeros(1, max_timestep + 1, self.h_dim))
if state_encoder is None:
self.state_encoder = None
blocks = [Block(h_dim, input_seq_len, n_heads, drop_p) for _ in range(n_blocks)]
self.embed_rtg = torch.nn.Linear(1, h_dim)
self.embed_state = torch.nn.Linear(state_dim, h_dim)
self.predict_rtg = torch.nn.Linear(h_dim, 1)
self.predict_state = torch.nn.Linear(h_dim, state_dim)
if continuous:
# continuous actions
self.embed_action = torch.nn.Linear(act_dim, h_dim)
use_action_tanh = True # True for continuous actions
else:
# discrete actions
self.embed_action = torch.nn.Embedding(act_dim, h_dim)
use_action_tanh = False # False for discrete actions
self.predict_action = nn.Sequential(
*([nn.Linear(h_dim, act_dim)] + ([nn.Tanh()] if use_action_tanh else []))
)
else:
blocks = [Block(h_dim, input_seq_len + 1, n_heads, drop_p) for _ in range(n_blocks)]
self.state_encoder = state_encoder
self.embed_rtg = nn.Sequential(nn.Linear(1, h_dim), nn.Tanh())
self.head = nn.Linear(h_dim, act_dim, bias=False)
self.embed_action = nn.Sequential(nn.Embedding(act_dim, h_dim), nn.Tanh())
self.transformer = nn.Sequential(*blocks)
def forward(
self,
timesteps: torch.Tensor,
states: torch.Tensor,
actions: torch.Tensor,
returns_to_go: torch.Tensor,
tar: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Overview:
Forward computation graph of the decision transformer, input a sequence tensor \
and return a tensor with the same shape.
Arguments:
- timesteps (:obj:`torch.Tensor`): The timestep for input sequence.
- states (:obj:`torch.Tensor`): The sequence of states.
- actions (:obj:`torch.Tensor`): The sequence of actions.
- returns_to_go (:obj:`torch.Tensor`): The sequence of return-to-go.
- tar (:obj:`Optional[int]`): Whether to predict action, regardless of index.
Returns:
- output (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Output contains three tensors, \
they are correspondingly the predicted states, predicted actions and predicted return-to-go.
Examples:
>>> B, T = 4, 6
>>> state_dim = 3
>>> act_dim = 2
>>> DT_model = DecisionTransformer(\
state_dim=state_dim,\
act_dim=act_dim,\
n_blocks=3,\
h_dim=8,\
context_len=T,\
n_heads=2,\
drop_p=0.1,\
)
>>> timesteps = torch.randint(0, 100, [B, 3 * T - 1, 1], dtype=torch.long) # B x T
>>> states = torch.randn([B, T, state_dim]) # B x T x state_dim
>>> actions = torch.randint(0, act_dim, [B, T, 1])
>>> action_target = torch.randint(0, act_dim, [B, T, 1])
>>> returns_to_go_sample = torch.tensor([1, 0.8, 0.6, 0.4, 0.2, 0.]).repeat([B, 1]).unsqueeze(-1).float()
>>> traj_mask = torch.ones([B, T], dtype=torch.long) # B x T
>>> actions = actions.squeeze(-1)
>>> state_preds, action_preds, return_preds = DT_model.forward(\
timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go\
)
>>> assert state_preds.shape == torch.Size([B, T, state_dim])
>>> assert return_preds.shape == torch.Size([B, T, 1])
>>> assert action_preds.shape == torch.Size([B, T, act_dim])
"""
B, T = states.shape[0], states.shape[1]
if self.state_encoder is None:
time_embeddings = self.embed_timestep(timesteps)
# time embeddings are treated similar to positional embeddings
state_embeddings = self.embed_state(states) + time_embeddings
action_embeddings = self.embed_action(actions) + time_embeddings
returns_embeddings = self.embed_rtg(returns_to_go) + time_embeddings
# stack rtg, states and actions and reshape sequence as
# (r_0, s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2 ...)
t_p = torch.stack((returns_embeddings, state_embeddings, action_embeddings),
dim=1).permute(0, 2, 1, 3).reshape(B, 3 * T, self.h_dim)
h = self.embed_ln(t_p)
# transformer and prediction
h = self.transformer(h)
# get h reshaped such that its size = (B x 3 x T x h_dim) and
# h[:, 0, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t
# h[:, 1, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t, s_t
# h[:, 2, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t, s_t, a_t
# that is, for each timestep (t) we have 3 output embeddings from the transformer,
# each conditioned on all previous timesteps plus
# the 3 input variables at that timestep (r_t, s_t, a_t) in sequence.
h = h.reshape(B, T, 3, self.h_dim).permute(0, 2, 1, 3)
return_preds = self.predict_rtg(h[:, 2]) # predict next rtg given r, s, a
state_preds = self.predict_state(h[:, 2]) # predict next state given r, s, a
action_preds = self.predict_action(h[:, 1]) # predict action given r, s
else:
state_embeddings = self.state_encoder(
states.reshape(-1, *self.state_dim).type(torch.float32).contiguous()
) # (batch * block_size, h_dim)
state_embeddings = state_embeddings.reshape(B, T, self.h_dim) # (batch, block_size, h_dim)
returns_embeddings = self.embed_rtg(returns_to_go.type(torch.float32))
action_embeddings = self.embed_action(actions.type(torch.long).squeeze(-1)) # (batch, block_size, h_dim)
token_embeddings = torch.zeros(
(B, T * 3 - int(tar is None), self.h_dim), dtype=torch.float32, device=state_embeddings.device
)
token_embeddings[:, ::3, :] = returns_embeddings
token_embeddings[:, 1::3, :] = state_embeddings
token_embeddings[:, 2::3, :] = action_embeddings[:, -T + int(tar is None):, :]
all_global_pos_emb = torch.repeat_interleave(
self.global_pos_emb, B, dim=0
) # batch_size, traj_length, h_dim
position_embeddings = torch.gather(
all_global_pos_emb, 1, torch.repeat_interleave(timesteps, self.h_dim, dim=-1)
) + self.pos_emb[:, :token_embeddings.shape[1], :]
t_p = token_embeddings + position_embeddings
h = self.drop(t_p)
h = self.transformer(h)
h = self.embed_ln(h)
logits = self.head(h)
return_preds = None
state_preds = None
action_preds = logits[:, 1::3, :] # only keep predictions from state_embeddings
return state_preds, action_preds, return_preds
def configure_optimizers(
self, weight_decay: float, learning_rate: float, betas: Tuple[float, float] = (0.9, 0.95)
) -> torch.optim.Optimizer:
"""
Overview:
This function returns an optimizer given the input arguments. \
We are separating out all parameters of the model into two buckets: those that will experience \
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
Arguments:
- weight_decay (:obj:`float`): The weigh decay of the optimizer.
- learning_rate (:obj:`float`): The learning rate of the optimizer.
- betas (:obj:`Tuple[float, float]`): The betas for Adam optimizer.
Outputs:
- optimizer (:obj:`torch.optim.Optimizer`): The desired optimizer.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
# whitelist_weight_modules = (torch.nn.Linear, )
whitelist_weight_modules = (torch.nn.Linear, torch.nn.Conv2d)
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add('pos_emb')
no_decay.add('global_pos_emb')
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0,\
"parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
# create the pytorch optimizer object
optim_groups = [
{
"params": [param_dict[pn] for pn in sorted(list(decay))],
"weight_decay": weight_decay
},
{
"params": [param_dict[pn] for pn in sorted(list(no_decay))],
"weight_decay": 0.0
},
]
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas)
return optimizer
|