File size: 14,958 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
from typing import Optional, Tuple, Union, Dict
import torch
import torch.nn as nn
from ding.utils import MODEL_REGISTRY, SequenceType
from ding.torch_utils.network.transformer import Attention
from ding.torch_utils.network.nn_module import fc_block, build_normalization
from ..common import FCEncoder, ConvEncoder
class PCTransformer(nn.Module):
"""
Overview:
The transformer block for neural network of algorithms related to Procedure cloning (PC).
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self, cnn_hidden: int, att_hidden: int, att_heads: int, drop_p: float, max_T: int, n_att: int,
feedforward_hidden: int, n_feedforward: int
) -> None:
"""
Overview:
Initialize the procedure cloning transformer model according to corresponding input arguments.
Arguments:
- cnn_hidden (:obj:`int`): The last channel dimension of CNN encoder, such as 32.
- att_hidden (:obj:`int`): The dimension of attention blocks, such as 32.
- att_heads (:obj:`int`): The number of heads in attention blocks, such as 4.
- drop_p (:obj:`float`): The drop out rate of attention, such as 0.5.
- max_T (:obj:`int`): The sequence length of procedure cloning, such as 4.
- n_attn (:obj:`int`): The number of attention layers, such as 4.
- feedforward_hidden (:obj:`int`):The dimension of feedforward layers, such as 32.
- n_feedforward (:obj:`int`): The number of feedforward layers, such as 4.
"""
super().__init__()
self.n_att = n_att
self.n_feedforward = n_feedforward
self.attention_layer = []
self.norm_layer = [nn.LayerNorm(att_hidden)] * n_att
self.attention_layer.append(Attention(cnn_hidden, att_hidden, att_hidden, att_heads, nn.Dropout(drop_p)))
for i in range(n_att - 1):
self.attention_layer.append(Attention(att_hidden, att_hidden, att_hidden, att_heads, nn.Dropout(drop_p)))
self.att_drop = nn.Dropout(drop_p)
self.fc_blocks = []
self.fc_blocks.append(fc_block(att_hidden, feedforward_hidden, activation=nn.ReLU()))
for i in range(n_feedforward - 1):
self.fc_blocks.append(fc_block(feedforward_hidden, feedforward_hidden, activation=nn.ReLU()))
self.norm_layer.extend([nn.LayerNorm(feedforward_hidden)] * n_feedforward)
self.mask = torch.tril(torch.ones((max_T, max_T), dtype=torch.bool)).view(1, 1, max_T, max_T)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
The unique execution (forward) method of PCTransformer.
Arguments:
- x (:obj:`torch.Tensor`): Sequential data of several hidden states.
Returns:
- output (:obj:`torch.Tensor`): A tensor with the same shape as the input.
Examples:
>>> model = PCTransformer(128, 128, 8, 0, 16, 2, 128, 2)
>>> h = torch.randn((2, 16, 128))
>>> h = model(h)
>>> assert h.shape == torch.Size([2, 16, 128])
"""
for i in range(self.n_att):
x = self.att_drop(self.attention_layer[i](x, self.mask))
x = self.norm_layer[i](x)
for i in range(self.n_feedforward):
x = self.fc_blocks[i](x)
x = self.norm_layer[i + self.n_att](x)
return x
@MODEL_REGISTRY.register('pc_mcts')
class ProcedureCloningMCTS(nn.Module):
"""
Overview:
The neural network of algorithms related to Procedure cloning (PC).
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
obs_shape: SequenceType,
action_dim: int,
cnn_hidden_list: SequenceType = [128, 128, 256, 256, 256],
cnn_activation: nn.Module = nn.ReLU(),
cnn_kernel_size: SequenceType = [3, 3, 3, 3, 3],
cnn_stride: SequenceType = [1, 1, 1, 1, 1],
cnn_padding: SequenceType = [1, 1, 1, 1, 1],
mlp_hidden_list: SequenceType = [256, 256],
mlp_activation: nn.Module = nn.ReLU(),
att_heads: int = 8,
att_hidden: int = 128,
n_att: int = 4,
n_feedforward: int = 2,
feedforward_hidden: int = 256,
drop_p: float = 0.5,
max_T: int = 17
) -> None:
"""
Overview:
Initialize the MCTS procedure cloning model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`SequenceType`): Observation space shape, such as [4, 84, 84].
- action_dim (:obj:`int`): Action space shape, such as 6.
- cnn_hidden_list (:obj:`SequenceType`): The cnn channel dims for each block, such as\
[128, 128, 256, 256, 256].
- cnn_activation (:obj:`nn.Module`): The activation function for cnn blocks, such as ``nn.ReLU()``.
- cnn_kernel_size (:obj:`SequenceType`): The kernel size for each cnn block, such as [3, 3, 3, 3, 3].
- cnn_stride (:obj:`SequenceType`): The stride for each cnn block, such as [1, 1, 1, 1, 1].
- cnn_padding (:obj:`SequenceType`): The padding for each cnn block, such as [1, 1, 1, 1, 1].
- mlp_hidden_list (:obj:`SequenceType`): The last dim for this must match the last dim of \
``cnn_hidden_list``, such as [256, 256].
- mlp_activation (:obj:`nn.Module`): The activation function for mlp layers, such as ``nn.ReLU()``.
- att_heads (:obj:`int`): The number of attention heads in transformer, such as 8.
- att_hidden (:obj:`int`): The number of attention dimension in transformer, such as 128.
- n_att (:obj:`int`): The number of attention blocks in transformer, such as 4.
- n_feedforward (:obj:`int`): The number of feedforward layers in transformer, such as 2.
- drop_p (:obj:`float`): The drop out rate of attention, such as 0.5.
- max_T (:obj:`int`): The sequence length of procedure cloning, such as 17.
"""
super().__init__()
# Conv Encoder
self.embed_state = ConvEncoder(
obs_shape, cnn_hidden_list, cnn_activation, cnn_kernel_size, cnn_stride, cnn_padding
)
self.embed_action = FCEncoder(action_dim, mlp_hidden_list, activation=mlp_activation)
self.cnn_hidden_list = cnn_hidden_list
assert cnn_hidden_list[-1] == mlp_hidden_list[-1]
layers = []
for i in range(n_att):
if i == 0:
layers.append(Attention(cnn_hidden_list[-1], att_hidden, att_hidden, att_heads, nn.Dropout(drop_p)))
else:
layers.append(Attention(att_hidden, att_hidden, att_hidden, att_heads, nn.Dropout(drop_p)))
layers.append(build_normalization('LN')(att_hidden))
for i in range(n_feedforward):
if i == 0:
layers.append(fc_block(att_hidden, feedforward_hidden, activation=nn.ReLU()))
else:
layers.append(fc_block(feedforward_hidden, feedforward_hidden, activation=nn.ReLU()))
self.layernorm2 = build_normalization('LN')(feedforward_hidden)
self.transformer = PCTransformer(
cnn_hidden_list[-1], att_hidden, att_heads, drop_p, max_T, n_att, feedforward_hidden, n_feedforward
)
self.predict_goal = torch.nn.Linear(cnn_hidden_list[-1], cnn_hidden_list[-1])
self.predict_action = torch.nn.Linear(cnn_hidden_list[-1], action_dim)
def forward(self, states: torch.Tensor, goals: torch.Tensor,
actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
ProcedureCloningMCTS forward computation graph, input states tensor and goals tensor, \
calculate the predicted states and actions.
Arguments:
- states (:obj:`torch.Tensor`): The observation of current time.
- goals (:obj:`torch.Tensor`): The target observation after a period.
- actions (:obj:`torch.Tensor`): The actions executed during the period.
Returns:
- outputs (:obj:`Tuple[torch.Tensor, torch.Tensor]`): Predicted states and actions.
Examples:
>>> inputs = { \
'states': torch.randn(2, 3, 64, 64), \
'goals': torch.randn(2, 3, 64, 64), \
'actions': torch.randn(2, 15, 9) \
}
>>> model = ProcedureCloningMCTS(obs_shape=(3, 64, 64), action_dim=9)
>>> goal_preds, action_preds = model(inputs['states'], inputs['goals'], inputs['actions'])
>>> assert goal_preds.shape == (2, 256)
>>> assert action_preds.shape == (2, 16, 9)
"""
B, T, _ = actions.shape
# shape: (B, h_dim)
state_embeddings = self.embed_state(states).reshape(B, 1, self.cnn_hidden_list[-1])
goal_embeddings = self.embed_state(goals).reshape(B, 1, self.cnn_hidden_list[-1])
# shape: (B, context_len, h_dim)
actions_embeddings = self.embed_action(actions)
h = torch.cat((state_embeddings, goal_embeddings, actions_embeddings), dim=1)
h = self.transformer(h)
h = h.reshape(B, T + 2, self.cnn_hidden_list[-1])
goal_preds = self.predict_goal(h[:, 0, :])
action_preds = self.predict_action(h[:, 1:, :])
return goal_preds, action_preds
class BFSConvEncoder(nn.Module):
"""
Overview:
The ``BFSConvolution Encoder`` used to encode raw 3-dim observations. And output a feature map with the
same height and width as input. Interfaces: ``__init__``, ``forward``.
"""
def __init__(
self,
obs_shape: SequenceType,
hidden_size_list: SequenceType = [32, 64, 64, 128],
activation: Optional[nn.Module] = nn.ReLU(),
kernel_size: SequenceType = [8, 4, 3],
stride: SequenceType = [4, 2, 1],
padding: Optional[SequenceType] = None,
) -> None:
"""
Overview:
Init the ``BFSConvolution Encoder`` according to the provided arguments.
Arguments:
- obs_shape (:obj:`SequenceType`): Sequence of ``in_channel``, plus one or more ``input size``.
- hidden_size_list (:obj:`SequenceType`): Sequence of ``hidden_size`` of subsequent conv layers \
and the final dense layer.
- activation (:obj:`nn.Module`): Type of activation to use in the conv ``layers`` and ``ResBlock``. \
Default is ``nn.ReLU()``.
- kernel_size (:obj:`SequenceType`): Sequence of ``kernel_size`` of subsequent conv layers.
- stride (:obj:`SequenceType`): Sequence of ``stride`` of subsequent conv layers.
- padding (:obj:`SequenceType`): Padding added to all four sides of the input for each conv layer. \
See ``nn.Conv2d`` for more details. Default is ``None``.
"""
super(BFSConvEncoder, self).__init__()
self.obs_shape = obs_shape
self.act = activation
self.hidden_size_list = hidden_size_list
if padding is None:
padding = [0 for _ in range(len(kernel_size))]
layers = []
input_size = obs_shape[0] # in_channel
for i in range(len(kernel_size)):
layers.append(nn.Conv2d(input_size, hidden_size_list[i], kernel_size[i], stride[i], padding[i]))
layers.append(self.act)
input_size = hidden_size_list[i]
layers = layers[:-1]
self.main = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Return output tensor of the env observation.
Arguments:
- x (:obj:`torch.Tensor`): Env raw observation.
Returns:
- outputs (:obj:`torch.Tensor`): Output embedding tensor.
Examples:
>>> model = BFSConvEncoder([3, 16, 16], [32, 32, 4], kernel_size=[3, 3, 3], stride=[1, 1, 1]\
, padding=[1, 1, 1])
>>> inputs = torch.randn(3, 16, 16).unsqueeze(0)
>>> outputs = model(inputs)
>>> assert outputs['logit'].shape == torch.Size([4, 16, 16])
"""
return self.main(x)
@MODEL_REGISTRY.register('pc_bfs')
class ProcedureCloningBFS(nn.Module):
"""
Overview:
The neural network introduced in procedure cloning (PC) to process 3-dim observations.\
Given an input, this model will perform several 3x3 convolutions and output a feature map with \
the same height and width of input. The channel number of output will be the ``action_shape``.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
obs_shape: SequenceType,
action_shape: int,
encoder_hidden_size_list: SequenceType = [128, 128, 256, 256],
):
"""
Overview:
Init the ``BFSConvolution Encoder`` according to the provided arguments.
Arguments:
- obs_shape (:obj:`SequenceType`): Sequence of ``in_channel``, plus one or more ``input size``,\
such as [4, 84, 84].
- action_dim (:obj:`int`): Action space shape, such as 6.
- cnn_hidden_list (:obj:`SequenceType`): The cnn channel dims for each block, such as [128, 128, 256, 256].
"""
super().__init__()
num_layers = len(encoder_hidden_size_list)
kernel_sizes = (3, ) * (num_layers + 1)
stride_sizes = (1, ) * (num_layers + 1)
padding_sizes = (1, ) * (num_layers + 1)
# The output channel equals to action_shape + 1
encoder_hidden_size_list.append(action_shape + 1)
self._encoder = BFSConvEncoder(
obs_shape=obs_shape,
hidden_size_list=encoder_hidden_size_list,
kernel_size=kernel_sizes,
stride=stride_sizes,
padding=padding_sizes,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
The computation graph. Given a 3-dim observation, this function will return a tensor with the same \
height and width. The channel number of output will be the ``action_shape``.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of model's forward computation graph, \
only contains a single key ``logit``.
Examples:
>>> model = ProcedureCloningBFS([3, 16, 16], 4)
>>> inputs = torch.randn(16, 16, 3).unsqueeze(0)
>>> outputs = model(inputs)
>>> assert outputs['logit'].shape == torch.Size([16, 16, 4])
"""
x = x.permute(0, 3, 1, 2)
x = self._encoder(x)
return {'logit': x.permute(0, 2, 3, 1)}
|