File size: 42,459 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
from typing import Any, Tuple, Callable, Optional, List, Dict, Union
from abc import ABC
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical, Independent, Normal
from ding.torch_utils import get_tensor_data, zeros_like
from ding.rl_utils import create_noise_generator
from ding.utils.data import default_collate
class IModelWrapper(ABC):
"""
Overview:
The basic interface class of model wrappers. Model wrapper is a wrapper class of torch.nn.Module model, which \
is used to add some extra operations for the wrapped model, such as hidden state maintain for RNN-base model, \
argmax action selection for discrete action space, etc.
Interfaces:
``__init__``, ``__getattr__``, ``info``, ``reset``, ``forward``.
"""
def __init__(self, model: nn.Module) -> None:
"""
Overview:
Initialize model and other necessary member variabls in the model wrapper.
"""
self._model = model
def __getattr__(self, key: str) -> Any:
"""
Overview:
Get original attrbutes of torch.nn.Module model, such as variables and methods defined in model.
Arguments:
- key (:obj:`str`): The string key to query.
Returns:
- ret (:obj:`Any`): The queried attribute.
"""
return getattr(self._model, key)
def info(self, attr_name: str) -> str:
"""
Overview:
Get some string information of the indicated ``attr_name``, which is used for debug wrappers.
This method will recursively search for the indicated ``attr_name``.
Arguments:
- attr_name (:obj:`str`): The string key to query information.
Returns:
- info_string (:obj:`str`): The information string of the indicated ``attr_name``.
"""
if attr_name in dir(self):
if isinstance(self._model, IModelWrapper):
return '{} {}'.format(self.__class__.__name__, self._model.info(attr_name))
else:
if attr_name in dir(self._model):
return '{} {}'.format(self.__class__.__name__, self._model.__class__.__name__)
else:
return '{}'.format(self.__class__.__name__)
else:
if isinstance(self._model, IModelWrapper):
return '{}'.format(self._model.info(attr_name))
else:
return '{}'.format(self._model.__class__.__name__)
def reset(self, data_id: List[int] = None, **kwargs) -> None:
"""
Overview
Basic interface, reset some stateful varaibles in the model wrapper, such as hidden state of RNN.
Here we do nothing and just implement this interface method.
Other derived model wrappers can override this method to add some extra operations.
Arguments:
- data_id (:obj:`List[int]`): The data id list to reset. If None, reset all data. In practice, \
model wrappers often needs to maintain some stateful variables for each data trajectory, \
so we leave this ``data_id`` argument to reset the stateful variables of the indicated data.
"""
pass
def forward(self, *args, **kwargs) -> Any:
"""
Overview:
Basic interface, call the wrapped model's forward method. Other derived model wrappers can override this \
method to add some extra operations.
"""
return self._model.forward(*args, **kwargs)
class BaseModelWrapper(IModelWrapper):
"""
Overview:
Placeholder class for the model wrapper. This class is used to wrap the model without any extra operations, \
including a empty ``reset`` method and a ``forward`` method which directly call the wrapped model's forward.
To keep the consistency of the model wrapper interface, we use this class to wrap the model without specific \
operations in the implementation of DI-engine's policy.
"""
pass
class HiddenStateWrapper(IModelWrapper):
"""
Overview:
Maintain the hidden state for RNN-base model. Each sample in a batch has its own state.
Interfaces:
``__init__``, ``reset``, ``forward``.
"""
def __init__(
self,
model: Any,
state_num: int,
save_prev_state: bool = False,
init_fn: Callable = lambda: None,
) -> None:
"""
Overview:
Maintain the hidden state for RNN-base model. Each sample in a batch has its own state. \
Init the maintain state and state function; Then wrap the ``model.forward`` method with auto \
saved data ['prev_state'] input, and create the ``model.reset`` method.
Arguments:
- model(:obj:`Any`): Wrapped model class, should contain forward method.
- state_num (:obj:`int`): Number of states to process.
- save_prev_state (:obj:`bool`): Whether to output the prev state in output.
- init_fn (:obj:`Callable`): The function which is used to init every hidden state when init and reset, \
default return None for hidden states.
.. note::
1. This helper must deal with an actual batch with some parts of samples, e.g: 6 samples of state_num 8.
2. This helper must deal with the single sample state reset.
"""
super().__init__(model)
self._state_num = state_num
# This is to maintain hidden states (when it comes to this wrapper, \
# map self._state into data['prev_value] and update next_state, store in self._state)
self._state = {i: init_fn() for i in range(state_num)}
self._save_prev_state = save_prev_state
self._init_fn = init_fn
def forward(self, data, **kwargs):
state_id = kwargs.pop('data_id', None)
valid_id = kwargs.pop('valid_id', None) # None, not used in any code in DI-engine
data, state_info = self.before_forward(data, state_id) # update data['prev_state'] with self._state
output = self._model.forward(data, **kwargs)
h = output.pop('next_state', None)
if h is not None:
self.after_forward(h, state_info, valid_id) # this is to store the 'next hidden state' for each time step
if self._save_prev_state:
prev_state = get_tensor_data(data['prev_state'])
# for compatibility, because of the incompatibility between None and torch.Tensor
for i in range(len(prev_state)):
if prev_state[i] is None:
prev_state[i] = zeros_like(h[0])
output['prev_state'] = prev_state
return output
def reset(self, *args, **kwargs):
state = kwargs.pop('state', None)
state_id = kwargs.get('data_id', None)
self.reset_state(state, state_id)
if hasattr(self._model, 'reset'):
return self._model.reset(*args, **kwargs)
def reset_state(self, state: Optional[list] = None, state_id: Optional[list] = None) -> None:
if state_id is None: # train: init all states
state_id = [i for i in range(self._state_num)]
if state is None: # collect: init state that are done
state = [self._init_fn() for i in range(len(state_id))]
assert len(state) == len(state_id), '{}/{}'.format(len(state), len(state_id))
for idx, s in zip(state_id, state):
self._state[idx] = s
def before_forward(self, data: dict, state_id: Optional[list]) -> Tuple[dict, dict]:
if state_id is None:
state_id = [i for i in range(self._state_num)]
state_info = {idx: self._state[idx] for idx in state_id}
data['prev_state'] = list(state_info.values())
return data, state_info
def after_forward(self, h: Any, state_info: dict, valid_id: Optional[list] = None) -> None:
assert len(h) == len(state_info), '{}/{}'.format(len(h), len(state_info))
for i, idx in enumerate(state_info.keys()):
if valid_id is None:
self._state[idx] = h[i]
else:
if idx in valid_id:
self._state[idx] = h[i]
class TransformerInputWrapper(IModelWrapper):
def __init__(self, model: Any, seq_len: int, init_fn: Callable = lambda: None) -> None:
"""
Overview:
Given N the length of the sequences received by a Transformer model, maintain the last N-1 input
observations. In this way we can provide at each step all the observations needed by Transformer to
compute its output. We need this because some methods such as 'collect' and 'evaluate' only provide the
model 1 observation per step and don't have memory of past observations, but Transformer needs a sequence
of N observations. The wrapper method ``forward`` will save the input observation in a FIFO memory of
length N and the method ``reset`` will reset the memory. The empty memory spaces will be initialized
with 'init_fn' or zero by calling the method ``reset_input``. Since different env can terminate at
different steps, the method ``reset_memory_entry`` only initializes the memory of specific environments in
the batch size.
Arguments:
- model (:obj:`Any`): Wrapped model class, should contain forward method.
- seq_len (:obj:`int`): Number of past observations to remember.
- init_fn (:obj:`Callable`): The function which is used to init every memory locations when init and reset.
"""
super().__init__(model)
self.seq_len = seq_len
self._init_fn = init_fn
self.obs_memory = None # shape (N, bs, *obs_shape)
self.init_obs = None # sample of observation used to initialize the memory
self.bs = None
self.memory_idx = [] # len bs, index of where to put the next element in the sequence for each batch
def forward(self,
input_obs: torch.Tensor,
only_last_logit: bool = True,
data_id: List = None,
**kwargs) -> Dict[str, torch.Tensor]:
"""
Arguments:
- input_obs (:obj:`torch.Tensor`): Input observation without sequence shape: ``(bs, *obs_shape)``.
- only_last_logit (:obj:`bool`): if True 'logit' only contains the output corresponding to the current \
observation (shape: bs, embedding_dim), otherwise logit has shape (seq_len, bs, embedding_dim).
- data_id (:obj:`List`): id of the envs that are currently running. Memory update and logits return has \
only effect for those environments. If `None` it is considered that all envs are running.
Returns:
- Dictionary containing the input_sequence 'input_seq' stored in memory and the transformer output 'logit'.
"""
if self.obs_memory is None:
self.reset_input(torch.zeros_like(input_obs)) # init the memory with the size of the input observation
if data_id is None:
data_id = list(range(self.bs))
assert self.obs_memory.shape[0] == self.seq_len
# implements a fifo queue, self.memory_idx is index where to put the last element
for i, b in enumerate(data_id):
if self.memory_idx[b] == self.seq_len:
# roll back of 1 position along dim 1 (sequence dim)
self.obs_memory[:, b] = torch.roll(self.obs_memory[:, b], -1, 0)
self.obs_memory[self.memory_idx[b] - 1, b] = input_obs[i]
if self.memory_idx[b] < self.seq_len:
self.obs_memory[self.memory_idx[b], b] = input_obs[i]
if self.memory_idx != self.seq_len:
self.memory_idx[b] += 1
out = self._model.forward(self.obs_memory, **kwargs)
out['input_seq'] = self.obs_memory
if only_last_logit:
# return only the logits for running environments
out['logit'] = [out['logit'][self.memory_idx[b] - 1][b] for b in range(self.bs) if b in data_id]
out['logit'] = default_collate(out['logit'])
return out
def reset_input(self, input_obs: torch.Tensor):
"""
Overview:
Initialize the whole memory
"""
init_obs = torch.zeros_like(input_obs)
self.init_obs = init_obs
self.obs_memory = [] # List(bs, *obs_shape)
for i in range(self.seq_len):
self.obs_memory.append(init_obs.clone() if init_obs is not None else self._init_fn())
self.obs_memory = default_collate(self.obs_memory) # shape (N, bs, *obs_shape)
self.bs = self.init_obs.shape[0]
self.memory_idx = [0 for _ in range(self.bs)]
# called before evaluation
# called after each evaluation iteration for each done env
# called after each collect iteration for each done env
def reset(self, *args, **kwargs):
state_id = kwargs.get('data_id', None)
input_obs = kwargs.get('input_obs', None)
if input_obs is not None:
self.reset_input(input_obs)
if state_id is not None:
self.reset_memory_entry(state_id)
if input_obs is None and state_id is None:
self.obs_memory = None
if hasattr(self._model, 'reset'):
return self._model.reset(*args, **kwargs)
def reset_memory_entry(self, state_id: Optional[list] = None) -> None:
"""
Overview:
Reset specific batch of the memory, batch ids are specified in 'state_id'
"""
assert self.init_obs is not None, 'Call method "reset_memory" first'
for _id in state_id:
self.memory_idx[_id] = 0
self.obs_memory[:, _id] = self.init_obs[_id] # init the corresponding sequence with broadcasting
class TransformerSegmentWrapper(IModelWrapper):
def __init__(self, model: Any, seq_len: int) -> None:
"""
Overview:
Given T the length of a trajectory and N the length of the sequences received by a Transformer model,
split T in sequences of N elements and forward each sequence one by one. If T % N != 0, the last sequence
will be zero-padded. Usually used during Transformer training phase.
Arguments:
- model (:obj:`Any`): Wrapped model class, should contain forward method.
- seq_len (:obj:`int`): N, length of a sequence.
"""
super().__init__(model)
self.seq_len = seq_len
def forward(self, obs: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:
"""
Arguments:
- data (:obj:`dict`): Dict type data, including at least \
['main_obs', 'target_obs', 'action', 'reward', 'done', 'weight']
Returns:
- List containing a dict of the model output for each sequence.
"""
sequences = list(torch.split(obs, self.seq_len, dim=0))
if sequences[-1].shape[0] < self.seq_len:
last = sequences[-1].clone()
diff = self.seq_len - last.shape[0]
sequences[-1] = F.pad(input=last, pad=(0, 0, 0, 0, 0, diff), mode='constant', value=0)
outputs = []
for i, seq in enumerate(sequences):
out = self._model.forward(seq, **kwargs)
outputs.append(out)
out = {}
for k in outputs[0].keys():
out_k = [o[k] for o in outputs]
out_k = torch.cat(out_k, dim=0)
out[k] = out_k
return out
class TransformerMemoryWrapper(IModelWrapper):
def __init__(
self,
model: Any,
batch_size: int,
) -> None:
"""
Overview:
Stores a copy of the Transformer memory in order to be reused across different phases. To make it more
clear, suppose the training pipeline is divided into 3 phases: evaluate, collect, learn. The goal of the
wrapper is to maintain the content of the memory at the end of each phase and reuse it when the same phase
is executed again. In this way, it prevents different phases to interferer each other memory.
Arguments:
- model (:obj:`Any`): Wrapped model class, should contain forward method.
- batch_size (:obj:`int`): Memory batch size.
"""
super().__init__(model)
# shape (layer_num, memory_len, bs, embedding_dim)
self._model.reset_memory(batch_size=batch_size)
self.memory = self._model.get_memory()
self.mem_shape = self.memory.shape
def forward(self, *args, **kwargs) -> Dict[str, torch.Tensor]:
"""
Arguments:
- data (:obj:`dict`): Dict type data, including at least \
['main_obs', 'target_obs', 'action', 'reward', 'done', 'weight']
Returns:
- Output of the forward method.
"""
self._model.reset_memory(state=self.memory)
out = self._model.forward(*args, **kwargs)
self.memory = self._model.get_memory()
return out
def reset(self, *args, **kwargs):
state_id = kwargs.get('data_id', None)
if state_id is None:
self.memory = torch.zeros(self.mem_shape)
else:
self.reset_memory_entry(state_id)
if hasattr(self._model, 'reset'):
return self._model.reset(*args, **kwargs)
def reset_memory_entry(self, state_id: Optional[list] = None) -> None:
"""
Overview:
Reset specific batch of the memory, batch ids are specified in 'state_id'
"""
for _id in state_id:
self.memory[:, :, _id] = torch.zeros((self.mem_shape[-1]))
def show_memory_occupancy(self, layer=0) -> None:
memory = self.memory
memory_shape = memory.shape
print('Layer {}-------------------------------------------'.format(layer))
for b in range(memory_shape[-2]):
print('b{}: '.format(b), end='')
for m in range(memory_shape[1]):
if sum(abs(memory[layer][m][b].flatten())) != 0:
print(1, end='')
else:
print(0, end='')
print()
def sample_action(logit=None, prob=None):
if prob is None:
prob = torch.softmax(logit, dim=-1)
shape = prob.shape
prob += 1e-8
prob = prob.view(-1, shape[-1])
# prob can also be treated as weight in multinomial sample
action = torch.multinomial(prob, 1).squeeze(-1)
action = action.view(*shape[:-1])
return action
class ArgmaxSampleWrapper(IModelWrapper):
"""
Overview:
Used to help the model to sample argmax action.
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
"""
Overview:
Employ model forward computation graph, and use the output logit to greedily select max action (argmax).
"""
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
action = [l.argmax(dim=-1) for l in logit]
if len(action) == 1:
action, logit = action[0], logit[0]
output['action'] = action
return output
class CombinationArgmaxSampleWrapper(IModelWrapper):
r"""
Overview:
Used to help the model to sample combination argmax action.
Interfaces:
``forward``.
"""
def forward(self, shot_number, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
# Generate actions.
act = []
mask = torch.zeros_like(output['logit'])
for ii in range(shot_number):
masked_logit = output['logit'] + mask
actions = masked_logit.argmax(dim=-1)
act.append(actions)
for jj in range(actions.shape[0]):
mask[jj][actions[jj]] = -1e8
# `act` is shaped: (B, shot_number)
act = torch.stack(act, dim=1)
output['action'] = act
return output
class CombinationMultinomialSampleWrapper(IModelWrapper):
r"""
Overview:
Used to help the model to sample combination multinomial action.
Interfaces:
``forward``.
"""
def forward(self, shot_number, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
# Generate actions.
act = []
mask = torch.zeros_like(output['logit'])
for ii in range(shot_number):
dist = torch.distributions.Categorical(logits=output['logit'] + mask)
actions = dist.sample()
act.append(actions)
for jj in range(actions.shape[0]):
mask[jj][actions[jj]] = -1e8
# `act` is shaped: (B, shot_number)
act = torch.stack(act, dim=1)
output['action'] = act
return output
class HybridArgmaxSampleWrapper(IModelWrapper):
r"""
Overview:
Used to help the model to sample argmax action in hybrid action space,
i.e.{'action_type': discrete, 'action_args', continuous}
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
if 'logit' not in output:
return output
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
action = [l.argmax(dim=-1) for l in logit]
if len(action) == 1:
action, logit = action[0], logit[0]
output = {'action': {'action_type': action, 'action_args': output['action_args']}, 'logit': logit}
return output
class MultinomialSampleWrapper(IModelWrapper):
"""
Overview:
Used to help the model get the corresponding action from the output['logits']self.
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
if 'alpha' in kwargs.keys():
alpha = kwargs.pop('alpha')
else:
alpha = None
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
if alpha is None:
action = [sample_action(logit=l) for l in logit]
else:
# Note that if alpha is passed in here, we will divide logit by alpha.
action = [sample_action(logit=l / alpha) for l in logit]
if len(action) == 1:
action, logit = action[0], logit[0]
output['action'] = action
return output
class EpsGreedySampleWrapper(IModelWrapper):
r"""
Overview:
Epsilon greedy sampler used in collector_model to help balance exploratin and exploitation.
The type of eps can vary from different algorithms, such as:
- float (i.e. python native scalar): for almost normal case
- Dict[str, float]: for algorithm NGU
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
eps = kwargs.pop('eps')
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
else:
mask = None
action = []
if isinstance(eps, dict):
# for NGU policy, eps is a dict, each collect env has a different eps
for i, l in enumerate(logit[0]):
eps_tmp = eps[i]
if np.random.random() > eps_tmp:
action.append(l.argmax(dim=-1))
else:
if mask is not None:
action.append(
sample_action(prob=mask[0][i].float().unsqueeze(0)).to(logit[0].device).squeeze(0)
)
else:
action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1]).to(logit[0].device))
action = torch.stack(action, dim=-1) # shape torch.size([env_num])
else:
for i, l in enumerate(logit):
if np.random.random() > eps:
action.append(l.argmax(dim=-1))
else:
if mask is not None:
action.append(sample_action(prob=mask[i].float()))
else:
action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1]))
if len(action) == 1:
action, logit = action[0], logit[0]
output['action'] = action
return output
class EpsGreedyMultinomialSampleWrapper(IModelWrapper):
r"""
Overview:
Epsilon greedy sampler coupled with multinomial sample used in collector_model
to help balance exploration and exploitation.
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
eps = kwargs.pop('eps')
if 'alpha' in kwargs.keys():
alpha = kwargs.pop('alpha')
else:
alpha = None
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
else:
mask = None
action = []
for i, l in enumerate(logit):
if np.random.random() > eps:
if alpha is None:
action = [sample_action(logit=l) for l in logit]
else:
# Note that if alpha is passed in here, we will divide logit by alpha.
action = [sample_action(logit=l / alpha) for l in logit]
else:
if mask:
action.append(sample_action(prob=mask[i].float()))
else:
action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1]))
if len(action) == 1:
action, logit = action[0], logit[0]
output['action'] = action
return output
class HybridEpsGreedySampleWrapper(IModelWrapper):
r"""
Overview:
Epsilon greedy sampler used in collector_model to help balance exploration and exploitation.
In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous}
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
eps = kwargs.pop('eps')
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
else:
mask = None
action = []
for i, l in enumerate(logit):
if np.random.random() > eps:
action.append(l.argmax(dim=-1))
else:
if mask:
action.append(sample_action(prob=mask[i].float()))
else:
action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1]))
if len(action) == 1:
action, logit = action[0], logit[0]
output = {'action': {'action_type': action, 'action_args': output['action_args']}, 'logit': logit}
return output
class HybridEpsGreedyMultinomialSampleWrapper(IModelWrapper):
"""
Overview:
Epsilon greedy sampler coupled with multinomial sample used in collector_model
to help balance exploration and exploitation.
In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous}
Interfaces:
``forward``.
"""
def forward(self, *args, **kwargs):
eps = kwargs.pop('eps')
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
if 'logit' not in output:
return output
logit = output['logit']
assert isinstance(logit, torch.Tensor) or isinstance(logit, list)
if isinstance(logit, torch.Tensor):
logit = [logit]
if 'action_mask' in output:
mask = output['action_mask']
if isinstance(mask, torch.Tensor):
mask = [mask]
logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)]
else:
mask = None
action = []
for i, l in enumerate(logit):
if np.random.random() > eps:
action = [sample_action(logit=l) for l in logit]
else:
if mask:
action.append(sample_action(prob=mask[i].float()))
else:
action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1]))
if len(action) == 1:
action, logit = action[0], logit[0]
output = {'action': {'action_type': action, 'action_args': output['action_args']}, 'logit': logit}
return output
class HybridReparamMultinomialSampleWrapper(IModelWrapper):
"""
Overview:
Reparameterization sampler coupled with multinomial sample used in collector_model
to help balance exploration and exploitation.
In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous}
Interfaces:
forward
"""
def forward(self, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit'] # logit: {'action_type': action_type_logit, 'action_args': action_args_logit}
# discrete part
action_type_logit = logit['action_type']
prob = torch.softmax(action_type_logit, dim=-1)
pi_action = Categorical(prob)
action_type = pi_action.sample()
# continuous part
mu, sigma = logit['action_args']['mu'], logit['action_args']['sigma']
dist = Independent(Normal(mu, sigma), 1)
action_args = dist.sample()
action = {'action_type': action_type, 'action_args': action_args}
output['action'] = action
return output
class HybridDeterministicArgmaxSampleWrapper(IModelWrapper):
"""
Overview:
Deterministic sampler coupled with argmax sample used in eval_model.
In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous}
Interfaces:
forward
"""
def forward(self, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
logit = output['logit'] # logit: {'action_type': action_type_logit, 'action_args': action_args_logit}
# discrete part
action_type_logit = logit['action_type']
action_type = action_type_logit.argmax(dim=-1)
# continuous part
mu = logit['action_args']['mu']
action_args = mu
action = {'action_type': action_type, 'action_args': action_args}
output['action'] = action
return output
class DeterministicSampleWrapper(IModelWrapper):
"""
Overview:
Deterministic sampler (just use mu directly) used in eval_model.
Interfaces:
forward
"""
def forward(self, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
output['action'] = output['logit']['mu']
return output
class ReparamSampleWrapper(IModelWrapper):
"""
Overview:
Reparameterization gaussian sampler used in collector_model.
Interfaces:
forward
"""
def forward(self, *args, **kwargs):
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
mu, sigma = output['logit']['mu'], output['logit']['sigma']
dist = Independent(Normal(mu, sigma), 1)
output['action'] = dist.sample()
return output
class ActionNoiseWrapper(IModelWrapper):
r"""
Overview:
Add noise to collector's action output; Do clips on both generated noise and action after adding noise.
Interfaces:
``__init__``, ``forward``.
Arguments:
- model (:obj:`Any`): Wrapped model class. Should contain ``forward`` method.
- noise_type (:obj:`str`): The type of noise that should be generated, support ['gauss', 'ou'].
- noise_kwargs (:obj:`dict`): Keyword args that should be used in noise init. Depends on ``noise_type``.
- noise_range (:obj:`Optional[dict]`): Range of noise, used for clipping.
- action_range (:obj:`Optional[dict]`): Range of action + noise, used for clip, default clip to [-1, 1].
"""
def __init__(
self,
model: Any,
noise_type: str = 'gauss',
noise_kwargs: dict = {},
noise_range: Optional[dict] = None,
action_range: Optional[dict] = {
'min': -1,
'max': 1
}
) -> None:
super().__init__(model)
self.noise_generator = create_noise_generator(noise_type, noise_kwargs)
self.noise_range = noise_range
self.action_range = action_range
def forward(self, *args, **kwargs):
# if noise sigma need decay, update noise kwargs.
if 'sigma' in kwargs:
sigma = kwargs.pop('sigma')
if sigma is not None:
self.noise_generator.sigma = sigma
output = self._model.forward(*args, **kwargs)
assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output))
if 'action' in output or 'action_args' in output:
key = 'action' if 'action' in output else 'action_args'
action = output[key]
assert isinstance(action, torch.Tensor)
action = self.add_noise(action)
output[key] = action
return output
def add_noise(self, action: torch.Tensor) -> torch.Tensor:
r"""
Overview:
Generate noise and clip noise if needed. Add noise to action and clip action if needed.
Arguments:
- action (:obj:`torch.Tensor`): Model's action output.
Returns:
- noised_action (:obj:`torch.Tensor`): Action processed after adding noise and clipping.
"""
noise = self.noise_generator(action.shape, action.device)
if self.noise_range is not None:
noise = noise.clamp(self.noise_range['min'], self.noise_range['max'])
action += noise
if self.action_range is not None:
action = action.clamp(self.action_range['min'], self.action_range['max'])
return action
class TargetNetworkWrapper(IModelWrapper):
r"""
Overview:
Maintain and update the target network
Interfaces:
update, reset
"""
def __init__(self, model: Any, update_type: str, update_kwargs: dict):
super().__init__(model)
assert update_type in ['momentum', 'assign']
self._update_type = update_type
self._update_kwargs = update_kwargs
self._update_count = 0
def reset(self, *args, **kwargs):
target_update_count = kwargs.pop('target_update_count', None)
self.reset_state(target_update_count)
if hasattr(self._model, 'reset'):
return self._model.reset(*args, **kwargs)
def update(self, state_dict: dict, direct: bool = False) -> None:
r"""
Overview:
Update the target network state dict
Arguments:
- state_dict (:obj:`dict`): the state_dict from learner model
- direct (:obj:`bool`): whether to update the target network directly, \
if true then will simply call the load_state_dict method of the model
"""
if direct:
self._model.load_state_dict(state_dict, strict=True)
self._update_count = 0
else:
if self._update_type == 'assign':
if (self._update_count + 1) % self._update_kwargs['freq'] == 0:
self._model.load_state_dict(state_dict, strict=True)
self._update_count += 1
elif self._update_type == 'momentum':
theta = self._update_kwargs['theta']
for name, p in self._model.named_parameters():
# default theta = 0.001
p.data = (1 - theta) * p.data + theta * state_dict[name]
def reset_state(self, target_update_count: int = None) -> None:
r"""
Overview:
Reset the update_count
Arguments:
target_update_count (:obj:`int`): reset target update count value.
"""
if target_update_count is not None:
self._update_count = target_update_count
class TeacherNetworkWrapper(IModelWrapper):
"""
Overview:
Set the teacher Network. Set the model's model.teacher_cfg to the input teacher_cfg
"""
def __init__(self, model, teacher_cfg):
super().__init__(model)
self._model._teacher_cfg = teacher_cfg
raise NotImplementedError
wrapper_name_map = {
'base': BaseModelWrapper,
'hidden_state': HiddenStateWrapper,
'argmax_sample': ArgmaxSampleWrapper,
'hybrid_argmax_sample': HybridArgmaxSampleWrapper,
'eps_greedy_sample': EpsGreedySampleWrapper,
'eps_greedy_multinomial_sample': EpsGreedyMultinomialSampleWrapper,
'deterministic_sample': DeterministicSampleWrapper,
'reparam_sample': ReparamSampleWrapper,
'hybrid_eps_greedy_sample': HybridEpsGreedySampleWrapper,
'hybrid_eps_greedy_multinomial_sample': HybridEpsGreedyMultinomialSampleWrapper,
'hybrid_reparam_multinomial_sample': HybridReparamMultinomialSampleWrapper,
'hybrid_deterministic_argmax_sample': HybridDeterministicArgmaxSampleWrapper,
'multinomial_sample': MultinomialSampleWrapper,
'action_noise': ActionNoiseWrapper,
'transformer_input': TransformerInputWrapper,
'transformer_segment': TransformerSegmentWrapper,
'transformer_memory': TransformerMemoryWrapper,
# model wrapper
'target': TargetNetworkWrapper,
'teacher': TeacherNetworkWrapper,
'combination_argmax_sample': CombinationArgmaxSampleWrapper,
'combination_multinomial_sample': CombinationMultinomialSampleWrapper,
}
def model_wrap(model: Union[nn.Module, IModelWrapper], wrapper_name: str = None, **kwargs):
"""
Overview:
Wrap the model with the specified wrapper and return the wrappered model.
Arguments:
- model (:obj:`Any`): The model to be wrapped.
- wrapper_name (:obj:`str`): The name of the wrapper to be used.
.. note::
The arguments of the wrapper should be passed in as kwargs.
"""
if wrapper_name in wrapper_name_map:
# TODO test whether to remove this if branch
if not isinstance(model, IModelWrapper):
model = wrapper_name_map['base'](model)
model = wrapper_name_map[wrapper_name](model, **kwargs)
else:
raise TypeError("not support model_wrapper type: {}".format(wrapper_name))
return model
def register_wrapper(name: str, wrapper_type: type) -> None:
"""
Overview:
Register new wrapper to ``wrapper_name_map``. When user implements a new wrapper, they must call this function \
to complete the registration. Then the wrapper can be called by ``model_wrap``.
Arguments:
- name (:obj:`str`): The name of the new wrapper to be registered.
- wrapper_type (:obj:`type`): The wrapper class needs to be added in ``wrapper_name_map``. This argument \
should be the subclass of ``IModelWrapper``.
"""
assert isinstance(name, str)
assert issubclass(wrapper_type, IModelWrapper)
wrapper_name_map[name] = wrapper_type
|