File size: 9,276 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Tuple, Dict
import torch
import numpy as np
import torch.nn.functional as F
class Pd(object):
"""
Overview:
Abstract class for parameterizable probability distributions and sampling functions.
Interfaces:
``neglogp``, ``entropy``, ``noise_mode``, ``mode``, ``sample``
.. tip::
In dereived classes, `logits` should be an attribute member stored in class.
"""
def neglogp(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Calculate cross_entropy between input x and logits
Arguments:
- x (:obj:`torch.Tensor`): the input tensor
Return:
- cross_entropy (:obj:`torch.Tensor`): the returned cross_entropy loss
"""
raise NotImplementedError
def entropy(self) -> torch.Tensor:
"""
Overview:
Calculate the softmax entropy of logits
Arguments:
- reduction (:obj:`str`): support [None, 'mean'], default set to 'mean'
Returns:
- entropy (:obj:`torch.Tensor`): the calculated entropy
"""
raise NotImplementedError
def noise_mode(self):
"""
Overview:
Add noise to logits. This method is designed for randomness
"""
raise NotImplementedError
def mode(self):
"""
Overview:
Return logits argmax result. This method is designed for deterministic.
"""
raise NotImplementedError
def sample(self):
"""
Overview:
Sample from logits's distribution by using softmax. This method is designed for multinomial.
"""
raise NotImplementedError
class CategoricalPd(Pd):
"""
Overview:
Catagorical probility distribution sampler
Interfaces:
``__init__``, ``neglogp``, ``entropy``, ``noise_mode``, ``mode``, ``sample``
"""
def __init__(self, logits: torch.Tensor = None) -> None:
"""
Overview:
Init the Pd with logits
Arguments:
- logits (:obj:torch.Tensor): logits to sample from
"""
self.update_logits(logits)
def update_logits(self, logits: torch.Tensor) -> None:
"""
Overview:
Updata logits
Arguments:
- logits (:obj:`torch.Tensor`): logits to update
"""
self.logits = logits
def neglogp(self, x, reduction: str = 'mean') -> torch.Tensor:
"""
Overview:
Calculate cross_entropy between input x and logits
Arguments:
- x (:obj:`torch.Tensor`): the input tensor
- reduction (:obj:`str`): support [None, 'mean'], default set to mean
Return:
- cross_entropy (:obj:`torch.Tensor`): the returned cross_entropy loss
"""
return F.cross_entropy(self.logits, x, reduction=reduction)
def entropy(self, reduction: str = 'mean') -> torch.Tensor:
"""
Overview:
Calculate the softmax entropy of logits
Arguments:
- reduction (:obj:`str`): support [None, 'mean'], default set to mean
Returns:
- entropy (:obj:`torch.Tensor`): the calculated entropy
"""
a = self.logits - self.logits.max(dim=-1, keepdim=True)[0]
ea = torch.exp(a)
z = ea.sum(dim=-1, keepdim=True)
p = ea / z
entropy = (p * (torch.log(z) - a)).sum(dim=-1)
assert (reduction in [None, 'mean'])
if reduction is None:
return entropy
elif reduction == 'mean':
return entropy.mean()
def noise_mode(self, viz: bool = False) -> Tuple[torch.Tensor, Dict[str, np.ndarray]]:
"""
Overview:
add noise to logits
Arguments:
- viz (:obj:`bool`): Whether to return numpy from of logits, noise and noise_logits; \
Short for ``visualize`` . (Because tensor type cannot visualize in tb or text log)
Returns:
- result (:obj:`torch.Tensor`): noised logits
- viz_feature (:obj:`Dict[str, np.ndarray]`): ndarray type data for visualization.
"""
u = torch.rand_like(self.logits)
u = -torch.log(-torch.log(u))
noise_logits = self.logits + u
result = noise_logits.argmax(dim=-1)
if viz:
viz_feature = {}
viz_feature['logits'] = self.logits.data.cpu().numpy()
viz_feature['noise'] = u.data.cpu().numpy()
viz_feature['noise_logits'] = noise_logits.data.cpu().numpy()
return result, viz_feature
else:
return result
def mode(self, viz: bool = False) -> Tuple[torch.Tensor, Dict[str, np.ndarray]]:
"""
Overview:
return logits argmax result
Arguments:
- viz (:obj:`bool`): Whether to return numpy from of logits, noise and noise_logits;
Short for ``visualize`` . (Because tensor type cannot visualize in tb or text log)
Returns:
- result (:obj:`torch.Tensor`): the logits argmax result
- viz_feature (:obj:`Dict[str, np.ndarray]`): ndarray type data for visualization.
"""
result = self.logits.argmax(dim=-1)
if viz:
viz_feature = {}
viz_feature['logits'] = self.logits.data.cpu().numpy()
return result, viz_feature
else:
return result
def sample(self, viz: bool = False) -> Tuple[torch.Tensor, Dict[str, np.ndarray]]:
"""
Overview:
Sample from logits's distribution by using softmax
Arguments:
- viz (:obj:`bool`): Whether to return numpy from of logits, noise and noise_logits; \
Short for ``visualize`` . (Because tensor type cannot visualize in tb or text log)
Returns:
- result (:obj:`torch.Tensor`): the logits sampled result
- viz_feature (:obj:`Dict[str, np.ndarray]`): ndarray type data for visualization.
"""
p = torch.softmax(self.logits, dim=1)
result = torch.multinomial(p, 1).squeeze(1)
if viz:
viz_feature = {}
viz_feature['logits'] = self.logits.data.cpu().numpy()
return result, viz_feature
else:
return result
class CategoricalPdPytorch(torch.distributions.Categorical):
"""
Overview:
Wrapped ``torch.distributions.Categorical``
Interfaces:
``__init__``, ``update_logits``, ``update_probs``, ``sample``, ``neglogp``, ``mode``, ``entropy``
"""
def __init__(self, probs: torch.Tensor = None) -> None:
"""
Overview:
Initialize the CategoricalPdPytorch object.
Arguments:
- probs (:obj:`torch.Tensor`): The tensor of probabilities.
"""
if probs is not None:
self.update_probs(probs)
def update_logits(self, logits: torch.Tensor) -> None:
"""
Overview:
Updata logits
Arguments:
- logits (:obj:`torch.Tensor`): logits to update
"""
super().__init__(logits=logits)
def update_probs(self, probs: torch.Tensor) -> None:
"""
Overview:
Updata probs
Arguments:
- probs (:obj:`torch.Tensor`): probs to update
"""
super().__init__(probs=probs)
def sample(self) -> torch.Tensor:
"""
Overview:
Sample from logits's distribution by using softmax
Return:
- result (:obj:`torch.Tensor`): the logits sampled result
"""
return super().sample()
def neglogp(self, actions: torch.Tensor, reduction: str = 'mean') -> torch.Tensor:
"""
Overview:
Calculate cross_entropy between input x and logits
Arguments:
- actions (:obj:`torch.Tensor`): the input action tensor
- reduction (:obj:`str`): support [None, 'mean'], default set to mean
Return:
- cross_entropy (:obj:`torch.Tensor`): the returned cross_entropy loss
"""
neglogp = super().log_prob(actions)
assert (reduction in ['none', 'mean'])
if reduction == 'none':
return neglogp
elif reduction == 'mean':
return neglogp.mean(dim=0)
def mode(self) -> torch.Tensor:
"""
Overview:
Return logits argmax result
Return:
- result(:obj:`torch.Tensor`): the logits argmax result
"""
return self.probs.argmax(dim=-1)
def entropy(self, reduction: str = None) -> torch.Tensor:
"""
Overview:
Calculate the softmax entropy of logits
Arguments:
- reduction (:obj:`str`): support [None, 'mean'], default set to mean
Returns:
- entropy (:obj:`torch.Tensor`): the calculated entropy
"""
entropy = super().entropy()
assert (reduction in [None, 'mean'])
if reduction is None:
return entropy
elif reduction == 'mean':
return entropy.mean()
|