File size: 28,781 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
import math
import numpy as np

import torch
from torch import nn
import torch.nn.functional as F
from torch import distributions as torchd
from ding.torch_utils import MLP
from ding.rl_utils import symlog, inv_symlog


class Conv2dSame(torch.nn.Conv2d):
    """
    Overview:
         Conv2dSame Network for dreamerv3.
    Interfaces:
        ``__init__``, ``forward``
    """

    def calc_same_pad(self, i, k, s, d):
        """
        Overview:
            Calculate the same padding size.
        Arguments:
            - i (:obj:`int`): Input size.
            - k (:obj:`int`): Kernel size.
            - s (:obj:`int`): Stride size.
            - d (:obj:`int`): Dilation size.
        """
        return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)

    def forward(self, x):
        """
        Overview:
            compute the forward of Conv2dSame.
        Arguments:
            - x (:obj:`torch.Tensor`): Input tensor.
        """
        ih, iw = x.size()[-2:]
        pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
        pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])

        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])

        ret = F.conv2d(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )
        return ret


class DreamerLayerNorm(nn.Module):
    """
    Overview:
         DreamerLayerNorm Network for dreamerv3.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, ch, eps=1e-03):
        """
        Overview:
            Init the DreamerLayerNorm class.
        Arguments:
            - ch (:obj:`int`): Input channel.
            - eps (:obj:`float`): Epsilon.
        """

        super(DreamerLayerNorm, self).__init__()
        self.norm = torch.nn.LayerNorm(ch, eps=eps)

    def forward(self, x):
        """
        Overview:
            compute the forward of DreamerLayerNorm.
        Arguments:
            - x (:obj:`torch.Tensor`): Input tensor.
        """

        x = x.permute(0, 2, 3, 1)
        x = self.norm(x)
        x = x.permute(0, 3, 1, 2)
        return x


class DenseHead(nn.Module):
    """
    Overview:
       DenseHead Network for value head, reward head, and discount head of dreamerv3.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
        self,
        inp_dim,
        shape,  # (255,)
        layer_num,
        units,  # 512
        act='SiLU',
        norm='LN',
        dist='normal',
        std=1.0,
        outscale=1.0,
        device='cpu',
    ):
        """
        Overview:
            Init the DenseHead class.
        Arguments:
            - inp_dim (:obj:`int`): Input dimension.
            - shape (:obj:`tuple`): Output shape.
            - layer_num (:obj:`int`): Number of layers.
            - units (:obj:`int`): Number of units.
            - act (:obj:`str`): Activation function.
            - norm (:obj:`str`): Normalization function.
            - dist (:obj:`str`): Distribution function.
            - std (:obj:`float`): Standard deviation.
            - outscale (:obj:`float`): Output scale.
            - device (:obj:`str`): Device.
        """

        super(DenseHead, self).__init__()
        self._shape = (shape, ) if isinstance(shape, int) else shape
        if len(self._shape) == 0:
            self._shape = (1, )
        self._layer_num = layer_num
        self._units = units
        self._act = getattr(torch.nn, act)()
        self._norm = norm
        self._dist = dist
        self._std = std
        self._device = device

        self.mlp = MLP(
            inp_dim,
            self._units,
            self._units,
            self._layer_num,
            layer_fn=nn.Linear,
            activation=self._act,
            norm_type=self._norm
        )
        self.mlp.apply(weight_init)

        self.mean_layer = nn.Linear(self._units, np.prod(self._shape))
        self.mean_layer.apply(uniform_weight_init(outscale))

        if self._std == "learned":
            self.std_layer = nn.Linear(self._units, np.prod(self._shape))
            self.std_layer.apply(uniform_weight_init(outscale))

    def forward(self, features):
        """
        Overview:
            compute the forward of DenseHead.
        Arguments:
            - features (:obj:`torch.Tensor`): Input tensor.
        """

        x = features
        out = self.mlp(x)  # (batch, time, _units=512)
        mean = self.mean_layer(out)  # (batch, time, 255)
        if self._std == "learned":
            std = self.std_layer(out)
        else:
            std = self._std
        if self._dist == "normal":
            return ContDist(torchd.independent.Independent(torchd.normal.Normal(mean, std), len(self._shape)))
        elif self._dist == "huber":
            return ContDist(torchd.independent.Independent(UnnormalizedHuber(mean, std, 1.0), len(self._shape)))
        elif self._dist == "binary":
            return Bernoulli(torchd.independent.Independent(torchd.bernoulli.Bernoulli(logits=mean), len(self._shape)))
        elif self._dist == "twohot_symlog":
            return TwoHotDistSymlog(logits=mean, device=self._device)
        raise NotImplementedError(self._dist)


class ActionHead(nn.Module):
    """
    Overview:
       ActionHead Network for action head of dreamerv3.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(
        self,
        inp_dim,
        size,
        layers,
        units,
        act=nn.ELU,
        norm=nn.LayerNorm,
        dist="trunc_normal",
        init_std=0.0,
        min_std=0.1,
        max_std=1.0,
        temp=0.1,
        outscale=1.0,
        unimix_ratio=0.01,
    ):
        """
        Overview:
            Initialize the ActionHead class.
        Arguments:
            - inp_dim (:obj:`int`): Input dimension.
            - size (:obj:`int`): Output size.
            - layers (:obj:`int`): Number of layers.
            - units (:obj:`int`): Number of units.
            - act (:obj:`str`): Activation function.
            - norm (:obj:`str`): Normalization function.
            - dist (:obj:`str`): Distribution function.
            - init_std (:obj:`float`): Initial standard deviation.
            - min_std (:obj:`float`): Minimum standard deviation.
            - max_std (:obj:`float`): Maximum standard deviation.
            - temp (:obj:`float`): Temperature.
            - outscale (:obj:`float`): Output scale.
            - unimix_ratio (:obj:`float`): Unimix ratio.
        """
        super(ActionHead, self).__init__()
        self._size = size
        self._layers = layers
        self._units = units
        self._dist = dist
        self._act = getattr(torch.nn, act)
        self._norm = getattr(torch.nn, norm)
        self._min_std = min_std
        self._max_std = max_std
        self._init_std = init_std
        self._unimix_ratio = unimix_ratio
        self._temp = temp() if callable(temp) else temp

        pre_layers = []
        for index in range(self._layers):
            pre_layers.append(nn.Linear(inp_dim, self._units, bias=False))
            pre_layers.append(self._norm(self._units, eps=1e-03))
            pre_layers.append(self._act())
            if index == 0:
                inp_dim = self._units
        self._pre_layers = nn.Sequential(*pre_layers)
        self._pre_layers.apply(weight_init)

        if self._dist in ["tanh_normal", "tanh_normal_5", "normal", "trunc_normal"]:
            self._dist_layer = nn.Linear(self._units, 2 * self._size)
            self._dist_layer.apply(uniform_weight_init(outscale))

        elif self._dist in ["normal_1", "onehot", "onehot_gumbel"]:
            self._dist_layer = nn.Linear(self._units, self._size)
            self._dist_layer.apply(uniform_weight_init(outscale))

    def forward(self, features):
        """
        Overview:
            compute the forward of ActionHead.
        Arguments:
            - features (:obj:`torch.Tensor`): Input tensor.
        """

        x = features
        x = self._pre_layers(x)
        if self._dist == "tanh_normal":
            x = self._dist_layer(x)
            mean, std = torch.split(x, 2, -1)
            mean = torch.tanh(mean)
            std = F.softplus(std + self._init_std) + self._min_std
            dist = torchd.normal.Normal(mean, std)
            dist = torchd.transformed_distribution.TransformedDistribution(dist, TanhBijector())
            dist = torchd.independent.Independent(dist, 1)
            dist = SampleDist(dist)
        elif self._dist == "tanh_normal_5":
            x = self._dist_layer(x)
            mean, std = torch.split(x, 2, -1)
            mean = 5 * torch.tanh(mean / 5)
            std = F.softplus(std + 5) + 5
            dist = torchd.normal.Normal(mean, std)
            dist = torchd.transformed_distribution.TransformedDistribution(dist, TanhBijector())
            dist = torchd.independent.Independent(dist, 1)
            dist = SampleDist(dist)
        elif self._dist == "normal":
            x = self._dist_layer(x)
            mean, std = torch.split(x, [self._size] * 2, -1)
            std = (self._max_std - self._min_std) * torch.sigmoid(std + 2.0) + self._min_std
            dist = torchd.normal.Normal(torch.tanh(mean), std)
            dist = ContDist(torchd.independent.Independent(dist, 1))
        elif self._dist == "normal_1":
            x = self._dist_layer(x)
            dist = torchd.normal.Normal(mean, 1)
            dist = ContDist(torchd.independent.Independent(dist, 1))
        elif self._dist == "trunc_normal":
            x = self._dist_layer(x)
            mean, std = torch.split(x, [self._size] * 2, -1)
            mean = torch.tanh(mean)
            std = 2 * torch.sigmoid(std / 2) + self._min_std
            dist = SafeTruncatedNormal(mean, std, -1, 1)
            dist = ContDist(torchd.independent.Independent(dist, 1))
        elif self._dist == "onehot":
            x = self._dist_layer(x)
            dist = OneHotDist(x, unimix_ratio=self._unimix_ratio)
        elif self._dist == "onehot_gumble":
            x = self._dist_layer(x)
            temp = self._temp
            dist = ContDist(torchd.gumbel.Gumbel(x, 1 / temp))
        else:
            raise NotImplementedError(self._dist)
        return dist


class SampleDist:
    """
    Overview:
       A kind of sample Dist for ActionHead of dreamerv3.
    Interfaces:
        ``__init__``, ``mean``, ``mode``, ``entropy``
    """

    def __init__(self, dist, samples=100):
        """
        Overview:
            Initialize the SampleDist class.
        Arguments:
            - dist (:obj:`torch.Tensor`): Distribution.
            - samples (:obj:`int`): Number of samples.
        """

        self._dist = dist
        self._samples = samples

    def mean(self):
        """
        Overview:
            Calculate the mean of the distribution.
        """

        samples = self._dist.sample(self._samples)
        return torch.mean(samples, 0)

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        sample = self._dist.sample(self._samples)
        logprob = self._dist.log_prob(sample)
        return sample[torch.argmax(logprob)][0]

    def entropy(self):
        """
        Overview:
            Calculate the entropy of the distribution.
        """

        sample = self._dist.sample(self._samples)
        logprob = self.log_prob(sample)
        return -torch.mean(logprob, 0)


class OneHotDist(torchd.one_hot_categorical.OneHotCategorical):
    """
    Overview:
       A kind of onehot Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``mode``, ``sample``
    """

    def __init__(self, logits=None, probs=None, unimix_ratio=0.0):
        """
        Overview:
            Initialize the OneHotDist class.
        Arguments:
            - logits (:obj:`torch.Tensor`): Logits.
            - probs (:obj:`torch.Tensor`): Probabilities.
            - unimix_ratio (:obj:`float`): Unimix ratio.
        """

        if logits is not None and unimix_ratio > 0.0:
            probs = F.softmax(logits, dim=-1)
            probs = probs * (1.0 - unimix_ratio) + unimix_ratio / probs.shape[-1]
            logits = torch.log(probs)
            super().__init__(logits=logits, probs=None)
        else:
            super().__init__(logits=logits, probs=probs)

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        _mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1])
        return _mode.detach() + super().logits - super().logits.detach()

    def sample(self, sample_shape=(), seed=None):
        """
        Overview:
            Sample from the distribution.
        Arguments:
            - sample_shape (:obj:`tuple`): Sample shape.
            - seed (:obj:`int`): Seed.
        """

        if seed is not None:
            raise ValueError('need to check')
        sample = super().sample(sample_shape)
        probs = super().probs
        while len(probs.shape) < len(sample.shape):
            probs = probs[None]
        sample += probs - probs.detach()
        return sample


class TwoHotDistSymlog:
    """
    Overview:
       A kind of twohotsymlog Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``mode``, ``mean``, ``log_prob``, ``log_prob_target``
    """

    def __init__(self, logits=None, low=-20.0, high=20.0, device='cpu'):
        """
        Overview:
            Initialize the TwoHotDistSymlog class.
        Arguments:
            - logits (:obj:`torch.Tensor`): Logits.
            - low (:obj:`float`): Low.
            - high (:obj:`float`): High.
            - device (:obj:`str`): Device.
        """

        self.logits = logits
        self.probs = torch.softmax(logits, -1)
        self.buckets = torch.linspace(low, high, steps=255).to(device)
        self.width = (self.buckets[-1] - self.buckets[0]) / 255

    def mean(self):
        """
        Overview:
            Calculate the mean of the distribution.
        """

        _mean = self.probs * self.buckets
        return inv_symlog(torch.sum(_mean, dim=-1, keepdim=True))

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        _mode = self.probs * self.buckets
        return inv_symlog(torch.sum(_mode, dim=-1, keepdim=True))

    # Inside OneHotCategorical, log_prob is calculated using only max element in targets
    def log_prob(self, x):
        """
        Overview:
            Calculate the log probability of the distribution.
        Arguments:
            - x (:obj:`torch.Tensor`): Input tensor.
        """

        x = symlog(x)
        # x(time, batch, 1)
        below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1
        above = len(self.buckets) - torch.sum((self.buckets > x[..., None]).to(torch.int32), dim=-1)
        below = torch.clip(below, 0, len(self.buckets) - 1)
        above = torch.clip(above, 0, len(self.buckets) - 1)
        equal = (below == above)

        dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x))
        dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x))
        total = dist_to_below + dist_to_above
        weight_below = dist_to_above / total
        weight_above = dist_to_below / total
        target = (
            F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None] +
            F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]
        )
        log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True)
        target = target.squeeze(-2)

        return (target * log_pred).sum(-1)

    def log_prob_target(self, target):
        """
        Overview:
            Calculate the log probability of the target.
        Arguments:
            - target (:obj:`torch.Tensor`): Target tensor.
        """

        log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True)
        return (target * log_pred).sum(-1)


class SymlogDist:
    """
    Overview:
       A kind of Symlog Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``entropy``, ``mode``, ``mean``, ``log_prob``
    """

    def __init__(self, mode, dist='mse', aggregation='sum', tol=1e-8, dim_to_reduce=[-1, -2, -3]):
        """
        Overview:
            Initialize the SymlogDist class.
        Arguments:
            - mode (:obj:`torch.Tensor`): Mode.
            - dist (:obj:`str`): Distribution function.
            - aggregation (:obj:`str`): Aggregation function.
            - tol (:obj:`float`): Tolerance.
            - dim_to_reduce (:obj:`list`): Dimension to reduce.
        """
        self._mode = mode
        self._dist = dist
        self._aggregation = aggregation
        self._tol = tol
        self._dim_to_reduce = dim_to_reduce

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        return inv_symlog(self._mode)

    def mean(self):
        """
        Overview:
            Calculate the mean of the distribution.
        """

        return inv_symlog(self._mode)

    def log_prob(self, value):
        """
        Overview:
            Calculate the log probability of the distribution.
        Arguments:
            - value (:obj:`torch.Tensor`): Input tensor.
        """

        assert self._mode.shape == value.shape
        if self._dist == 'mse':
            distance = (self._mode - symlog(value)) ** 2.0
            distance = torch.where(distance < self._tol, 0, distance)
        elif self._dist == 'abs':
            distance = torch.abs(self._mode - symlog(value))
            distance = torch.where(distance < self._tol, 0, distance)
        else:
            raise NotImplementedError(self._dist)
        if self._aggregation == 'mean':
            loss = distance.mean(self._dim_to_reduce)
        elif self._aggregation == 'sum':
            loss = distance.sum(self._dim_to_reduce)
        else:
            raise NotImplementedError(self._aggregation)
        return -loss


class ContDist:
    """
    Overview:
       A kind of ordinary Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``entropy``, ``mode``, ``sample``, ``log_prob``
    """

    def __init__(self, dist=None):
        """
        Overview:
            Initialize the ContDist class.
        Arguments:
            - dist (:obj:`torch.Tensor`): Distribution.
        """

        super().__init__()
        self._dist = dist
        self.mean = dist.mean

    def __getattr__(self, name):
        """
        Overview:
            Get attribute.
        Arguments:
            - name (:obj:`str`): Attribute name.
        """

        return getattr(self._dist, name)

    def entropy(self):
        """
        Overview:
            Calculate the entropy of the distribution.
        """

        return self._dist.entropy()

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        return self._dist.mean

    def sample(self, sample_shape=()):
        """
        Overview:
            Sample from the distribution.
        Arguments:
            - sample_shape (:obj:`tuple`): Sample shape.
        """

        return self._dist.rsample(sample_shape)

    def log_prob(self, x):
        return self._dist.log_prob(x)


class Bernoulli:
    """
    Overview:
       A kind of Bernoulli Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``entropy``, ``mode``, ``sample``, ``log_prob``
    """

    def __init__(self, dist=None):
        """
        Overview:
            Initialize the Bernoulli distribution.
        Arguments:
            - dist (:obj:`torch.Tensor`): Distribution.
        """

        super().__init__()
        self._dist = dist
        self.mean = dist.mean

    def __getattr__(self, name):
        """
        Overview:
            Get attribute.
        Arguments:
            - name (:obj:`str`): Attribute name.
        """

        return getattr(self._dist, name)

    def entropy(self):
        """
        Overview:
            Calculate the entropy of the distribution.
        """
        return self._dist.entropy()

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        _mode = torch.round(self._dist.mean)
        return _mode.detach() + self._dist.mean - self._dist.mean.detach()

    def sample(self, sample_shape=()):
        """
        Overview:
            Sample from the distribution.
        Arguments:
            - sample_shape (:obj:`tuple`): Sample shape.
        """

        return self._dist.rsample(sample_shape)

    def log_prob(self, x):
        """
        Overview:
            Calculate the log probability of the distribution.
        Arguments:
            - x (:obj:`torch.Tensor`): Input tensor.
        """

        _logits = self._dist.base_dist.logits
        log_probs0 = -F.softplus(_logits)
        log_probs1 = -F.softplus(-_logits)

        return log_probs0 * (1 - x) + log_probs1 * x


class UnnormalizedHuber(torchd.normal.Normal):
    """
    Overview:
       A kind of UnnormalizedHuber Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``mode``, ``log_prob``
    """

    def __init__(self, loc, scale, threshold=1, **kwargs):
        """
        Overview:
            Initialize the UnnormalizedHuber class.
        Arguments:
            - loc (:obj:`torch.Tensor`): Location.
            - scale (:obj:`torch.Tensor`): Scale.
            - threshold (:obj:`float`): Threshold.
        """
        super().__init__(loc, scale, **kwargs)
        self._threshold = threshold

    def log_prob(self, event):
        """
        Overview:
            Calculate the log probability of the distribution.
        Arguments:
            - event (:obj:`torch.Tensor`): Event.
        """

        return -(torch.sqrt((event - self.mean) ** 2 + self._threshold ** 2) - self._threshold)

    def mode(self):
        """
        Overview:
            Calculate the mode of the distribution.
        """

        return self.mean


class SafeTruncatedNormal(torchd.normal.Normal):
    """
    Overview:
       A kind of SafeTruncatedNormal Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``sample``
    """

    def __init__(self, loc, scale, low, high, clip=1e-6, mult=1):
        """
        Overview:
            Initialize the SafeTruncatedNormal class.
        Arguments:
            - loc (:obj:`torch.Tensor`): Location.
            - scale (:obj:`torch.Tensor`): Scale.
            - low (:obj:`float`): Low.
            - high (:obj:`float`): High.
            - clip (:obj:`float`): Clip.
            - mult (:obj:`float`): Mult.
        """

        super().__init__(loc, scale)
        self._low = low
        self._high = high
        self._clip = clip
        self._mult = mult

    def sample(self, sample_shape):
        """
        Overview:
            Sample from the distribution.
        Arguments:
            - sample_shape (:obj:`tuple`): Sample shape.
        """

        event = super().sample(sample_shape)
        if self._clip:
            clipped = torch.clip(event, self._low + self._clip, self._high - self._clip)
            event = event - event.detach() + clipped.detach()
        if self._mult:
            event *= self._mult
        return event


class TanhBijector(torchd.Transform):
    """
    Overview:
       A kind of TanhBijector Dist for dreamerv3.
    Interfaces:
        ``__init__``, ``_forward``, ``_inverse``, ``_forward_log_det_jacobian``
    """

    def __init__(self, validate_args=False, name='tanh'):
        """
        Overview:
            Initialize the TanhBijector class.
        Arguments:
            - validate_args (:obj:`bool`): Validate arguments.
            - name (:obj:`str`): Name.
        """

        super().__init__()

    def _forward(self, x):
        """
        Overview:
            Calculate the forward of the distribution.
        Arguments:
            - x (:obj:`torch.Tensor`): Input tensor.
        """

        return torch.tanh(x)

    def _inverse(self, y):
        """
        Overview:
            Calculate the inverse of the distribution.
        Arguments:
            - y (:obj:`torch.Tensor`): Input tensor.
        """

        y = torch.where((torch.abs(y) <= 1.), torch.clamp(y, -0.99999997, 0.99999997), y)
        y = torch.atanh(y)
        return y

    def _forward_log_det_jacobian(self, x):
        """
        Overview:
            Calculate the forward log det jacobian of the distribution.
        Arguments:
            - x (:obj:`torch.Tensor`): Input tensor.
        """

        log2 = torch.math.log(2.0)
        return 2.0 * (log2 - x - torch.softplus(-2.0 * x))


def static_scan(fn, inputs, start):
    """
    Overview:
         Static scan function.
    Arguments:
        - fn (:obj:`function`): Function.
        - inputs (:obj:`tuple`): Inputs.
        - start (:obj:`torch.Tensor`): Start tensor.
    """

    last = start  # {logit, stoch, deter:[batch_size, self._deter]}
    indices = range(inputs[0].shape[0])
    flag = True
    for index in indices:
        inp = lambda x: (_input[x] for _input in inputs)  # inputs:(action:(time, batch, 6), embed:(time, batch, 4096))
        last = fn(last, *inp(index))  # post, prior
        if flag:
            if isinstance(last, dict):
                outputs = {key: value.clone().unsqueeze(0) for key, value in last.items()}
            else:
                outputs = []
                for _last in last:
                    if isinstance(_last, dict):
                        outputs.append({key: value.clone().unsqueeze(0) for key, value in _last.items()})
                    else:
                        outputs.append(_last.clone().unsqueeze(0))
            flag = False
        else:
            if isinstance(last, dict):
                for key in last.keys():
                    outputs[key] = torch.cat([outputs[key], last[key].unsqueeze(0)], dim=0)
            else:
                for j in range(len(outputs)):
                    if isinstance(last[j], dict):
                        for key in last[j].keys():
                            outputs[j][key] = torch.cat([outputs[j][key], last[j][key].unsqueeze(0)], dim=0)
                    else:
                        outputs[j] = torch.cat([outputs[j], last[j].unsqueeze(0)], dim=0)
    if isinstance(last, dict):
        outputs = [outputs]
    return outputs


def weight_init(m):
    """
    Overview:
       weight_init for Linear, Conv2d, ConvTranspose2d, and LayerNorm.
    Arguments:
        - m (:obj:`torch.nn`): Module.
    """

    if isinstance(m, nn.Linear):
        in_num = m.in_features
        out_num = m.out_features
        denoms = (in_num + out_num) / 2.0
        scale = 1.0 / denoms
        std = np.sqrt(scale) / 0.87962566103423978
        nn.init.trunc_normal_(m.weight.data, mean=0.0, std=std, a=-2.0, b=2.0)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)
    elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
        space = m.kernel_size[0] * m.kernel_size[1]
        in_num = space * m.in_channels
        out_num = space * m.out_channels
        denoms = (in_num + out_num) / 2.0
        scale = 1.0 / denoms
        std = np.sqrt(scale) / 0.87962566103423978
        nn.init.trunc_normal_(m.weight.data, mean=0.0, std=std, a=-2.0, b=2.0)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)
    elif isinstance(m, nn.LayerNorm):
        m.weight.data.fill_(1.0)
        if hasattr(m.bias, 'data'):
            m.bias.data.fill_(0.0)


def uniform_weight_init(given_scale):
    """
    Overview:
       weight_init for Linear and LayerNorm.
    Arguments:
        - given_scale (:obj:`float`): Given scale.
    """

    def f(m):
        if isinstance(m, nn.Linear):
            in_num = m.in_features
            out_num = m.out_features
            denoms = (in_num + out_num) / 2.0
            scale = given_scale / denoms
            limit = np.sqrt(3 * scale)
            nn.init.uniform_(m.weight.data, a=-limit, b=limit)
            if hasattr(m.bias, 'data'):
                m.bias.data.fill_(0.0)
        elif isinstance(m, nn.LayerNorm):
            m.weight.data.fill_(1.0)
            if hasattr(m.bias, 'data'):
                m.bias.data.fill_(0.0)

    return f