File size: 10,665 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import torch
import torch.nn.functional as F
from torch.distributions import Categorical, Independent, Normal
from collections import namedtuple
from .isw import compute_importance_weights
from ding.hpc_rl import hpc_wrapper
def vtrace_nstep_return(clipped_rhos, clipped_cs, reward, bootstrap_values, gamma=0.99, lambda_=0.95):
"""
Overview:
Computation of vtrace return.
Returns:
- vtrace_return (:obj:`torch.FloatTensor`): the vtrace loss item, all of them are differentiable 0-dim tensor
Shapes:
- clipped_rhos (:obj:`torch.FloatTensor`): :math:`(T, B)`, where T is timestep, B is batch size
- clipped_cs (:obj:`torch.FloatTensor`): :math:`(T, B)`
- reward (:obj:`torch.FloatTensor`): :math:`(T, B)`
- bootstrap_values (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- vtrace_return (:obj:`torch.FloatTensor`): :math:`(T, B)`
"""
deltas = clipped_rhos * (reward + gamma * bootstrap_values[1:] - bootstrap_values[:-1])
factor = gamma * lambda_
result = bootstrap_values[:-1].clone()
vtrace_item = 0.
for t in reversed(range(reward.size()[0])):
vtrace_item = deltas[t] + factor * clipped_cs[t] * vtrace_item
result[t] += vtrace_item
return result
def vtrace_advantage(clipped_pg_rhos, reward, return_, bootstrap_values, gamma):
"""
Overview:
Computation of vtrace advantage.
Returns:
- vtrace_advantage (:obj:`namedtuple`): the vtrace loss item, all of them are the differentiable 0-dim tensor
Shapes:
- clipped_pg_rhos (:obj:`torch.FloatTensor`): :math:`(T, B)`, where T is timestep, B is batch size
- reward (:obj:`torch.FloatTensor`): :math:`(T, B)`
- return (:obj:`torch.FloatTensor`): :math:`(T, B)`
- bootstrap_values (:obj:`torch.FloatTensor`): :math:`(T, B)`
- vtrace_advantage (:obj:`torch.FloatTensor`): :math:`(T, B)`
"""
return clipped_pg_rhos * (reward + gamma * return_ - bootstrap_values)
vtrace_data = namedtuple('vtrace_data', ['target_output', 'behaviour_output', 'action', 'value', 'reward', 'weight'])
vtrace_loss = namedtuple('vtrace_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
def shape_fn_vtrace_discrete_action(args, kwargs):
r"""
Overview:
Return shape of vtrace for hpc
Returns:
shape: [T, B, N]
"""
if len(args) <= 0:
tmp = kwargs['data'].target_output.shape
else:
tmp = args[0].target_output.shape
return tmp
@hpc_wrapper(
shape_fn=shape_fn_vtrace_discrete_action,
namedtuple_data=True,
include_args=[0, 1, 2, 3, 4, 5],
include_kwargs=['data', 'gamma', 'lambda_', 'rho_clip_ratio', 'c_clip_ratio', 'rho_pg_clip_ratio']
)
def vtrace_error_discrete_action(
data: namedtuple,
gamma: float = 0.99,
lambda_: float = 0.95,
rho_clip_ratio: float = 1.0,
c_clip_ratio: float = 1.0,
rho_pg_clip_ratio: float = 1.0
):
"""
Overview:
Implementation of vtrace(IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner\
Architectures), (arXiv:1802.01561)
Arguments:
- data (:obj:`namedtuple`): input data with fields shown in ``vtrace_data``
- target_output (:obj:`torch.Tensor`): the output taking the action by the current policy network,\
usually this output is network output logit
- behaviour_output (:obj:`torch.Tensor`): the output taking the action by the behaviour policy network,\
usually this output is network output logit, which is used to produce the trajectory(collector)
- action (:obj:`torch.Tensor`): the chosen action(index for the discrete action space) in trajectory,\
i.e.: behaviour_action
- gamma: (:obj:`float`): the future discount factor, defaults to 0.95
- lambda: (:obj:`float`): mix factor between 1-step (lambda_=0) and n-step, defaults to 1.0
- rho_clip_ratio (:obj:`float`): the clipping threshold for importance weights (rho) when calculating\
the baseline targets (vs)
- c_clip_ratio (:obj:`float`): the clipping threshold for importance weights (c) when calculating\
the baseline targets (vs)
- rho_pg_clip_ratio (:obj:`float`): the clipping threshold for importance weights (rho) when calculating\
the policy gradient advantage
Returns:
- trace_loss (:obj:`namedtuple`): the vtrace loss item, all of them are the differentiable 0-dim tensor
Shapes:
- target_output (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where T is timestep, B is batch size and\
N is action dim
- behaviour_output (:obj:`torch.FloatTensor`): :math:`(T, B, N)`
- action (:obj:`torch.LongTensor`): :math:`(T, B)`
- value (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- reward (:obj:`torch.LongTensor`): :math:`(T, B)`
- weight (:obj:`torch.LongTensor`): :math:`(T, B)`
Examples:
>>> T, B, N = 4, 8, 16
>>> value = torch.randn(T + 1, B).requires_grad_(True)
>>> reward = torch.rand(T, B)
>>> target_output = torch.randn(T, B, N).requires_grad_(True)
>>> behaviour_output = torch.randn(T, B, N)
>>> action = torch.randint(0, N, size=(T, B))
>>> data = vtrace_data(target_output, behaviour_output, action, value, reward, None)
>>> loss = vtrace_error_discrete_action(data, rho_clip_ratio=1.1)
"""
target_output, behaviour_output, action, value, reward, weight = data
with torch.no_grad():
IS = compute_importance_weights(target_output, behaviour_output, action, 'discrete')
rhos = torch.clamp(IS, max=rho_clip_ratio)
cs = torch.clamp(IS, max=c_clip_ratio)
return_ = vtrace_nstep_return(rhos, cs, reward, value, gamma, lambda_)
pg_rhos = torch.clamp(IS, max=rho_pg_clip_ratio)
return_t_plus_1 = torch.cat([return_[1:], value[-1:]], 0)
adv = vtrace_advantage(pg_rhos, reward, return_t_plus_1, value[:-1], gamma)
if weight is None:
weight = torch.ones_like(reward)
dist_target = Categorical(logits=target_output)
pg_loss = -(dist_target.log_prob(action) * adv * weight).mean()
value_loss = (F.mse_loss(value[:-1], return_, reduction='none') * weight).mean()
entropy_loss = (dist_target.entropy() * weight).mean()
return vtrace_loss(pg_loss, value_loss, entropy_loss)
def vtrace_error_continuous_action(
data: namedtuple,
gamma: float = 0.99,
lambda_: float = 0.95,
rho_clip_ratio: float = 1.0,
c_clip_ratio: float = 1.0,
rho_pg_clip_ratio: float = 1.0
):
"""
Overview:
Implementation of vtrace(IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner\
Architectures), (arXiv:1802.01561)
Arguments:
- data (:obj:`namedtuple`): input data with fields shown in ``vtrace_data``
- target_output (:obj:`dict{key:torch.Tensor}`): the output taking the action \
by the current policy network, usually this output is network output, \
which represents the distribution by reparameterization trick.
- behaviour_output (:obj:`dict{key:torch.Tensor}`): the output taking the action \
by the behaviour policy network, usually this output is network output logit, \
which represents the distribution by reparameterization trick.
- action (:obj:`torch.Tensor`): the chosen action(index for the discrete action space) in trajectory, \
i.e.: behaviour_action
- gamma: (:obj:`float`): the future discount factor, defaults to 0.95
- lambda: (:obj:`float`): mix factor between 1-step (lambda_=0) and n-step, defaults to 1.0
- rho_clip_ratio (:obj:`float`): the clipping threshold for importance weights (rho) when calculating\
the baseline targets (vs)
- c_clip_ratio (:obj:`float`): the clipping threshold for importance weights (c) when calculating\
the baseline targets (vs)
- rho_pg_clip_ratio (:obj:`float`): the clipping threshold for importance weights (rho) when calculating\
the policy gradient advantage
Returns:
- trace_loss (:obj:`namedtuple`): the vtrace loss item, all of them are the differentiable 0-dim tensor
Shapes:
- target_output (:obj:`dict{key:torch.FloatTensor}`): :math:`(T, B, N)`, \
where T is timestep, B is batch size and \
N is action dim. The keys are usually parameters of reparameterization trick.
- behaviour_output (:obj:`dict{key:torch.FloatTensor}`): :math:`(T, B, N)`
- action (:obj:`torch.LongTensor`): :math:`(T, B)`
- value (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- reward (:obj:`torch.LongTensor`): :math:`(T, B)`
- weight (:obj:`torch.LongTensor`): :math:`(T, B)`
Examples:
>>> T, B, N = 4, 8, 16
>>> value = torch.randn(T + 1, B).requires_grad_(True)
>>> reward = torch.rand(T, B)
>>> target_output = dict(
>>> 'mu': torch.randn(T, B, N).requires_grad_(True),
>>> 'sigma': torch.exp(torch.randn(T, B, N).requires_grad_(True)),
>>> )
>>> behaviour_output = dict(
>>> 'mu': torch.randn(T, B, N),
>>> 'sigma': torch.exp(torch.randn(T, B, N)),
>>> )
>>> action = torch.randn((T, B, N))
>>> data = vtrace_data(target_output, behaviour_output, action, value, reward, None)
>>> loss = vtrace_error_continuous_action(data, rho_clip_ratio=1.1)
"""
target_output, behaviour_output, action, value, reward, weight = data
with torch.no_grad():
IS = compute_importance_weights(target_output, behaviour_output, action, 'continuous')
rhos = torch.clamp(IS, max=rho_clip_ratio)
cs = torch.clamp(IS, max=c_clip_ratio)
return_ = vtrace_nstep_return(rhos, cs, reward, value, gamma, lambda_)
pg_rhos = torch.clamp(IS, max=rho_pg_clip_ratio)
return_t_plus_1 = torch.cat([return_[1:], value[-1:]], 0)
adv = vtrace_advantage(pg_rhos, reward, return_t_plus_1, value[:-1], gamma)
if weight is None:
weight = torch.ones_like(reward)
dist_target = Independent(Normal(loc=target_output['mu'], scale=target_output['sigma']), 1)
pg_loss = -(dist_target.log_prob(action) * adv * weight).mean()
value_loss = (F.mse_loss(value[:-1], return_, reduction='none') * weight).mean()
entropy_loss = (dist_target.entropy() * weight).mean()
return vtrace_loss(pg_loss, value_loss, entropy_loss)
|