File size: 36,681 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
<div id="top"></div>

# LightZero

<div align="center">
    <img width="1000px" height="auto" src="https://github.com/opendilab/LightZero/blob/main/LightZero.png"></a>
</div>

---

[![Twitter](https://img.shields.io/twitter/url?style=social&url=https%3A%2F%2Ftwitter.com%2Fopendilab)](https://twitter.com/opendilab)
[![PyPI](https://img.shields.io/pypi/v/LightZero)](https://pypi.org/project/LightZero/)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/LightZero)
![Loc](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/HansBug/e002642132ec758e99264118c66778a4/raw/loc.json)
![Comments](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/HansBug/e002642132ec758e99264118c66778a4/raw/comments.json)

[![Code Test](https://github.com/opendilab/LightZero/workflows/Code%20Test/badge.svg)](https://github.com/opendilab/LightZero/actions?query=workflow%3A%22Code+Test%22)
[![Badge Creation](https://github.com/opendilab/LightZero/workflows/Badge%20Creation/badge.svg)](https://github.com/opendilab/LightZero/actions?query=workflow%3A%22Badge+Creation%22)
[![Package Release](https://github.com/opendilab/LightZero/workflows/Package%20Release/badge.svg)](https://github.com/opendilab/LightZero/actions?query=workflow%3A%22Package+Release%22)

![GitHub Org's stars](https://img.shields.io/github/stars/opendilab)
[![GitHub stars](https://img.shields.io/github/stars/opendilab/LightZero)](https://github.com/opendilab/LightZero/stargazers)
[![GitHub forks](https://img.shields.io/github/forks/opendilab/LightZero)](https://github.com/opendilab/LightZero/network)
![GitHub commit activity](https://img.shields.io/github/commit-activity/m/opendilab/LightZero)
[![GitHub issues](https://img.shields.io/github/issues/opendilab/LightZero)](https://github.com/opendilab/LightZero/issues)
[![GitHub pulls](https://img.shields.io/github/issues-pr/opendilab/LightZero)](https://github.com/opendilab/LightZero/pulls)
[![Contributors](https://img.shields.io/github/contributors/opendilab/LightZero)](https://github.com/opendilab/LightZero/graphs/contributors)
[![GitHub license](https://img.shields.io/github/license/opendilab/LightZero)](https://github.com/opendilab/LightZero/blob/master/LICENSE)

最近更新于 2023.12.07 LightZero-v0.0.3

> LightZero 是一个轻量、高效、易懂的 MCTS+RL 开源算法库。

[English](https://github.com/opendilab/LightZero/blob/main/README.md) | 简体中文 | [论文链接](https://arxiv.org/pdf/2310.08348.pdf)

## 背景

以 AlphaZero, MuZero 为代表的结合蒙特卡洛树搜索 (Monte Carlo Tree Search, MCTS) 和深度强化学习 (Deep Reinforcemeent Learning, DRL) 的方法,在诸如围棋,Atari 等各种游戏上取得了超人的水平,也在诸如蛋白质结构预测,矩阵乘法算法寻找等科学领域取得了可喜的进展。下图为蒙特卡洛树搜索(MCTS)算法族的发展历史:
![pipeline](assets/mcts_rl_evolution_overview.png)

## 概览

**LightZero** 是一个结合了蒙特卡洛树搜索和强化学习的开源算法工具包。 它支持一系列基于 MCTS 的 RL 算法,具有以下优点:
- 轻量。
- 高效。
- 易懂。

详情请参考[特点](#features)、[框架结构](#framework-structure)和[集成算法](#integrated-algorithms)。

**LightZero** 的目标是**标准化 MCTS 算法族,以加速相关研究和应用。** [Benchmark](#benchmark) 中介绍了目前所有已实现算法的性能比较。

### 导航
- [概览](#概览)
    - [导航](#导航)
    - [特点](#特点)
    - [框架结构](#框架结构)
    - [集成算法](#集成算法)
- [安装方法](#安装方法)
- [快速开始](#快速开始)
- [基线算法比较](#基线算法比较)
- [MCTS相关笔记](#MCTS-相关笔记)
    - [论文笔记](#论文笔记)
    - [算法框架图](#算法框架图)
- [MCTS相关论文](#MCTS-相关论文)
    - [重要论文](#重要论文)
    - [其他论文](#其他论文)
- [反馈意见和贡献](#反馈意见和贡献)
- [引用](#引用)
- [致谢](#致谢)
- [许可证](#许可证)

### 特点
**轻量**:LightZero 中集成了多种 MCTS 族算法,能够在同一框架下轻量化地解决多种属性的决策问题。

**高效**:LightZero 针对 MCTS 族算法中耗时最长的环节,采用混合异构计算编程提高计算效率。

**易懂**:LightZero 为所有集成的算法提供了详细文档和算法框架图,帮助用户理解算法内核,在同一范式下比较算法之间的异同。同时,LightZero 也为算法的代码实现提供了函数调用图和网络结构图,便于用户定位关键代码。

### 框架结构

<p align="center">
  <img src="assets/lightzero_pipeline.svg" alt="Image Description 2" width="50%" height="auto" style="margin: 0 1%;">
</p>

上图是 LightZero 的框架流程图。我们在下面简介其中的3个核心模块:

**Model**:
``Model`` 用于定义网络结构,包含``__init__``函数用于初始化网络结构,和``forward``函数用于计算网络的前向传播。

**Policy**:
``Policy`` 定义了对网络的更新方式和与环境交互的方式,包括三个过程,分别是训练过程(learn)、采样过程(collect)和评估过程(evaluate)。

**MCTS**:

``MCTS`` 定义了蒙特卡洛搜索树的结构和与``Policy``的交互方式。``MCTS``的实现包括 python 和 cpp 两种,分别在``ptree``和``ctree``中实现。

关于 LightZero 的文件结构,请参考 [lightzero_file_structure](https://github.com/opendilab/LightZero/blob/main/assets/lightzero_file_structure.svg)。

### 集成算法
LightZero 是基于 [PyTorch](https://pytorch.org/) 实现的 MCTS 算法库,在 MCTS 的实现中也用到了 cython 和 cpp。同时,LightZero 的框架主要基于 [DI-engine](https://github.com/opendilab/DI-engine) 实现。目前 LightZero 中集成的算法包括:
- [AlphaZero](https://www.science.org/doi/10.1126/science.aar6404)
- [MuZero](https://arxiv.org/abs/1911.08265)
- [Sampled MuZero](https://arxiv.org/abs/2104.06303)
- [Stochastic MuZero](https://openreview.net/pdf?id=X6D9bAHhBQ1)
- [EfficientZero](https://arxiv.org/abs/2111.00210)
- [Gumbel MuZero](https://openreview.net/pdf?id=bERaNdoegnO&)


LightZero 目前支持的环境及算法如下表所示:

| Env./Algo.    | AlphaZero | MuZero | EfficientZero | Sampled EfficientZero | Gumbel MuZero | Stochastic MuZero | 
|---------------| --------- | ------ |-------------| ------------------ | ---------- |----------------|
| TicTacToe     | ✔       | ✔      | 🔒           | 🔒                | ✔          | 🔒             |
| Gomoku        | ✔       | ✔      | 🔒          | 🔒               | ✔          | 🔒             |
| Connect4      | ✔       | ✔      | 🔒          | 🔒               | 🔒           | 🔒             |
| 2048          | ✔       | ✔      | 🔒            | 🔒                | 🔒           | ✔              |
| Chess         | 🔒       | 🔒     | 🔒          | 🔒               | 🔒         | 🔒             |
| Go            | 🔒       | 🔒     | 🔒          | 🔒               | 🔒         | 🔒             |
| CartPole      | ---       | ✔      | ✔           | ✔                | ✔          | ✔              |
| Pendulum      | ---       | ✔      | ✔           | ✔                | ✔          | ✔              |
| LunarLander   | ---       | ✔      | ✔           | ✔                | ✔          | ✔              |
| BipedalWalker | ---       | ✔      | ✔           | ✔                | ✔          | 🔒              |
| Atari         | ---       | ✔      | ✔           | ✔                | ✔          | ✔              |
| MuJoCo        | ---       | ✔     | ✔          | ✔                | 🔒         | 🔒               |
| MiniGrid      | ---       | ✔     | ✔          | ✔               | 🔒         | 🔒             |
| Bsuite        | ---       | ✔     | ✔          | ✔               | 🔒         | 🔒             |

<sup>(1): "✔" 表示对应的项目已经完成并经过良好的测试。</sup>

<sup>(2): "🔒" 表示对应的项目在等待列表中(正在进行中)。</sup>

<sup>(3): "---" 表示该算法不支持此环境。</sup>

## 安装方法

可以用以下命令从 Github 的源码中安装最新版的 LightZero:

```bash
git clone https://github.com/opendilab/LightZero.git
cd LightZero
pip3 install -e .
```

请注意,LightZero 目前仅支持在 `Linux``macOS` 平台上进行编译。
我们正在积极将该支持扩展到 `Windows` 平台。 

### 使用 Docker 进行安装

我们也提供了一个Dockerfile,用于设置包含运行 LightZero 库所需所有依赖项的环境。此 Docker 镜像基于 Ubuntu 20.04,并安装了Python 3.8以及其他必要的工具和库。
以下是如何使用我们的 Dockerfile 来构建 Docker 镜像,从该镜像运行一个容器,并在容器内执行 LightZero 代码的步骤。

1. **下载 Dockerfile**:Dockerfile 位于 LightZero 仓库的根目录中。将此[文件](https://github.com/opendilab/LightZero/blob/main/Dockerfile)下载到您的本地机器。

2. **准备构建上下文**:在您的本地机器上创建一个新的空目录,将 Dockerfile 移动到此目录,并导航到此目录。这一步有助于在构建过程中避免向 Docker 守护进程发送不必要的文件。
    ```bash
    mkdir lightzero-docker
    mv Dockerfile lightzero-docker/
    cd lightzero-docker/
    ```
3. **构建 Docker 镜像**:使用以下命令构建 Docker 镜像。此命令应在包含 Dockerfile 的目录内运行。
    ```bash
    docker build -t ubuntu-py38-lz:latest -f ./Dockerfile .
    ```
4. **从镜像运行容器**:使用以下命令以交互模式启动一个 Bash shell 的容器。
    ```bash
    docker run -dit --rm ubuntu-py38-lz:latest /bin/bash
    ```
5. **在容器内执行 LightZero 代码**:一旦你在容器内部,你可以使用以下命令运行示例 Python 脚本:
    ```bash
    python ./LightZero/zoo/classic_control/cartpole/config/cartpole_muzero_config.py
    ```

## 快速开始
使用如下代码在 [CartPole](https://gymnasium.farama.org/environments/classic_control/cart_pole/) 环境上快速训练一个 MuZero 智能体:

```bash
cd LightZero
python3 -u zoo/classic_control/cartpole/config/cartpole_muzero_config.py
```

使用如下代码在 [Pong](https://gymnasium.farama.org/environments/atari/pong/) 环境上快速训练一个 MuZero 智能体:

```bash
cd LightZero
python3 -u zoo/atari/config/atari_muzero_config.py
```

使用如下代码在 [TicTacToe](https://en.wikipedia.org/wiki/Tic-tac-toe) 环境上快速训练一个 MuZero 智能体:

```bash
cd LightZero
python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
```

## 基线算法比较

<details open><summary>点击折叠</summary>

- [AlphaZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/alphazero.py) 和 [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在3个棋类游戏([TicTacToe (井字棋)](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/tictactoe/envs/tictactoe_env.py),[Connect4](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/connect4/envs/connect4_env.py) 和 [Gomoku (五子棋)](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/gomoku/envs/gomoku_env.py))上的基线结果:
<p align="center">
  <img src="assets/benchmark/main/tictactoe_bot-mode_main.png" alt="tictactoe_bot-mode_main" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/connect4_bot-mode_main.png" alt="connect4_bot-mode_main" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/gomoku_bot-mode_main.png" alt="gomoku_bot-mode_main" width="30%" height="auto" style="margin: 0 1%;">
</p>

- [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py),[MuZero w/ SSL](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py),[EfficientZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/efficientzero.py) 和 [Sampled EfficientZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/sampled_efficientzero.py) 在3个代表性的 [Atari](https://github.com/opendilab/LightZero/blob/main/zoo/atari/envs/atari_lightzero_env.py) 离散动作空间环境上的基线结果:
<p align="center">
  <img src="assets/benchmark/main/pong_main.png" alt="pong_main" width="23%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/qbert_main.png" alt="qbert_main" width="23%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/mspacman_main.png" alt="mspacman_main" width="23%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/ablation/mspacman_sez_K.png" alt="mspacman_sez_K" width="23%" height="auto" style="margin: 0 1%;">
</p>

- [Sampled EfficientZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/sampled_efficientzero.py)(包括 ``Factored/Gaussian`` 2种策略表征方法)在5个连续动作空间环境([Pendulum-v1](https://github.com/opendilab/LightZero/blob/main/zoo/classic_control/pendulum/envs/pendulum_lightzero_env.py),[LunarLanderContinuous-v2](https://github.com/opendilab/LightZero/blob/main/zoo/box2d/lunarlander/envs/lunarlander_env.py),[BipedalWalker-v3](https://github.com/opendilab/LightZero/blob/main/zoo/box2d/bipedalwalker/envs/bipedalwalker_env.py),[Hopper-v3](https://github.com/opendilab/LightZero/blob/main/zoo/mujoco/envs/mujoco_lightzero_env.py) 和 [Walker2d-v3](https://github.com/opendilab/LightZero/blob/main/zoo/mujoco/envs/mujoco_lightzero_env.py))上的基线结果:
> 其中 ``Factored Policy`` 表示智能体学习一个输出离散分布的策略网络,上述5种环境手动离散化后的动作空间维度分别为11、49(7^2)、256(4^4)、64 (4^3) 和 4096 (4^6)。``Gaussian Policy``表示智能体学习一个策略网络,该网络直接输出高斯分布的参数 μ 和 σ。

<p align="center">
  <img src="assets/benchmark/main/pendulum_main.png" alt="pendulum_main" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/ablation/pendulum_sez_K.png" alt="pendulum_sez_K" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/lunarlander_main.png" alt="lunarlander_main" width="30%" height="auto" style="margin: 0 1%;">
</p>
<p align="center">
  <img src="assets/benchmark/main/bipedalwalker_main.png" alt="bipedalwalker_main" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/hopper_main.png" alt="hopper_main" width="31.5%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/walker2d_main.png" alt="walker2d_main" width="31.5%" height="auto" style="margin: 0 1%;">
</p>

- [Gumbel MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/gumbel_muzero.py) 和 [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在不同模拟次数下,在四个环境([PongNoFrameskip-v4](https://github.com/opendilab/LightZero/blob/main/zoo/atari/envs/atari_lightzero_env.py), [MsPacmanNoFrameskip-v4]((https://github.com/opendilab/LightZero/blob/main/zoo/atari/envs/atari_lightzero_env.py)), [Gomoku](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/gomoku/envs/gomoku_env.py) 和 [LunarLanderContinuous-v2](https://github.com/opendilab/LightZero/blob/main/zoo/box2d/lunarlander/envs/lunarlander_env.py))上的基线结果:
<p align="center">
  <img src="assets/benchmark/ablation/pong_gmz_ns.png" alt="pong_gmz_ns" width="23%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/ablation/mspacman_gmz_ns.png" alt="mspacman_gmz_ns" width="23%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/ablation/gomoku_bot-mode_gmz_ns.png" alt="gomoku_bot-mode_gmz_ns" width="23%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/ablation/lunarlander_gmz_ns.png" alt="lunarlander_gmz_ns" width="23%" height="auto" style="margin: 0 1%;">
</p>

- [Stochastic MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/stochastic_muzero.py) 和 [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在具有不同随机性程度的[2048环境](https://github.com/opendilab/LightZero/blob/main/zoo/game_2048/envs/game_2048_env.py) (num_chances=2/5) 上的基线结果:
<p align="center">
  <img src="assets/benchmark/main/2048/2048_stochasticmz_mz.png" alt="2048_stochasticmz_mz" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/2048/2048_stochasticmz_mz_nc5.png" alt="mspacman_gmz_ns" width="30%" height="auto" style="margin: 0 1%;">
</p>

- 结合不同的探索机制的 [MuZero w/ SSL](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在 [MiniGrid 环境](https://github.com/opendilab/LightZero/blob/main/zoo/minigrid/envs/minigrid_lightzero_env.py)上的基线结果:
<p align="center">
  <img src="assets/benchmark/main/minigrid/keycorridors3r3_exploration.png" alt="keycorridors3r3_exploration" width="30%" height="auto" style="margin: 0 1%;">
  <img src="assets/benchmark/main/minigrid/fourrooms_exploration.png" alt="fourrooms_exploration" width="30%" height="auto" style="margin: 0 1%;">
</p>

</details>

## MCTS 相关笔记

### 论文笔记

以下是 LightZero 中集成算法的中文详细文档:

<details open><summary>点击折叠</summary>

[AlphaZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/AlphaZero.pdf)

[MuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/MuZero.pdf)

[EfficientZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/EfficientZero.pdf)

[SampledMuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/SampledMuZero.pdf)

[GumbelMuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/GumbelMuZero.pdf)

[StochasticMuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/StochasticMuZero.pdf)

[算法概览图符号表](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/NotationTable.pdf)

</details>

### 算法框架图

以下是 LightZero 中集成算法的框架概览图:

<details closed>
<summary>(点击查看更多)</summary>

[MCTS](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/mcts_overview.pdf)

[AlphaZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/alphazero_overview.pdf)

[MuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/muzero_overview.pdf)

[EfficientZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/efficientzero_overview.pdf)

[SampledMuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/sampled_muzero_overview.pdf)

[GumbelMuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/gumbel_muzero_overview.pdf)

</details>

## MCTS 相关论文

以下是关于 **MCTS** 相关的论文集合,[这一部分](#MCTS-相关论文) 将会持续更新,追踪 MCTS 的前沿动态。

### 重要论文

<details closed>
<summary>(点击查看更多)</summary>

#### LightZero Implemented series

- [2018 _Science_ AlphaZero: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play](https://www.science.org/doi/10.1126/science.aar6404)
- [2019 MuZero: Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://arxiv.org/abs/1911.08265)
- [2021 EfficientZero: Mastering Atari Games with Limited Data](https://arxiv.org/abs/2111.00210)
- [2021 Sampled MuZero: Learning and Planning in Complex Action Spaces](https://arxiv.org/abs/2104.06303)
- [2022 Stochastic MuZero: Plannig in Stochastic Environments with A Learned Model](https://openreview.net/pdf?id=X6D9bAHhBQ1)
- [2022 Gumbel MuZero: Policy Improvement by Planning with Gumbel](https://openreview.net/pdf?id=bERaNdoegnO&)


#### AlphaGo series

- [2015 _Nature_ AlphaGo Mastering the game of Go with deep neural networks and tree search](https://www.nature.com/articles/nature16961)
- [2017 _Nature_ AlphaGo Zero Mastering the game of Go without human knowledge](https://www.nature.com/articles/nature24270)
- [2019 ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero](https://arxiv.org/abs/1902.04522) 
  - [Code](https://github.com/pytorch/ELF)
- [2023 Student of Games: A unified learning algorithm for both perfect and imperfect information games](https://www.science.org/doi/10.1126/sciadv.adg3256)

#### MuZero series
- [2022 Online and Offline Reinforcement Learning by Planning with a Learned Model](https://arxiv.org/abs/2104.06294)
- [2021 Vector Quantized Models for Planning](https://arxiv.org/abs/2106.04615)
- [2021 Muesli: Combining Improvements in Policy Optimization. ](https://arxiv.org/abs/2104.06159)

#### MCTS Analysis
- [2020 Monte-Carlo Tree Search as Regularized Policy Optimization](https://arxiv.org/abs/2007.12509)
- [2021 Self-Consistent Models and Values](https://arxiv.org/abs/2110.12840)
- [2022 Adversarial Policies Beat Professional-Level Go AIs](https://arxiv.org/abs/2211.00241)
- [2022 _PNAS_ Acquisition of Chess Knowledge in AlphaZero.](https://arxiv.org/abs/2111.09259)

#### MCTS Application
- [2023 Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search](https://openreview.net/pdf?id=ZTK3SefE8_Z)
- [2022 _Nature_ Discovering faster matrix multiplication algorithms with reinforcement learning](https://www.nature.com/articles/s41586-022-05172-4) 
  - [Code](https://github.com/deepmind/alphatensor)
- [2022 MuZero with Self-competition for Rate Control in VP9 Video Compression](https://arxiv.org/abs/2202.06626)
- [2021 DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning](https://arxiv.org/abs/2106.06135)
- [2019 Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving](https://arxiv.org/pdf/1905.02680.pdf)

</details>

### 其他论文

<details closed>
<summary>(点击查看更多)</summary>

#### ICML
- [Scalable Safe Policy Improvement via Monte Carlo Tree Search](https://openreview.net/pdf?id=tevbBSzSfK) 2023
  - Alberto Castellini, Federico Bianchi, Edoardo Zorzi, Thiago D. Simão, Alessandro Farinelli, Matthijs T. J. Spaan
  - Key: safe policy improvement online using a MCTS based strategy, Safe Policy Improvement with Baseline Bootstrapping
  - ExpEnv: Gridworld and SysAdmin
- [Efficient Learning for AlphaZero via Path Consistency](https://proceedings.mlr.press/v162/zhao22h/zhao22h.pdf) 2022
  - Dengwei Zhao, Shikui Tu, Lei Xu
  - Key: limited amount of self-plays,  path consistency (PC) optimality
  - ExpEnv: Go, Othello, Gomoku
- [Visualizing MuZero Models](https://arxiv.org/abs/2102.12924) 2021
  - Joery A. de Vries, Ken S. Voskuil, Thomas M. Moerland, Aske Plaat
  - Key: visualizing the value equivalent dynamics model, action trajectories diverge, two regularization techniques
  - ExpEnv: CartPole and MountainCar.
and internal state transition dynamics,
- [Convex Regularization in Monte-Carlo Tree Search](https://arxiv.org/pdf/2007.00391.pdf) 2021
  - Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen
  - Key: entropy-regularization backup operators, regret analysis, Tsallis etropy, 
  - ExpEnv: synthetic tree, Atari
- [Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains](http://proceedings.mlr.press/v119/fischer20a/fischer20a.pdf) 2020
  - Johannes Fischer, Ömer Sahin Tas
  - Key: Continuous POMDP, Particle Filter Tree, information-based reward shaping, Information Gathering.
  - ExpEnv: POMDPs.jl framework
  - [Code](https://github.com/johannes-fischer/icml2020_ipft)
- [Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search](http://proceedings.mlr.press/v119/chen20k/chen20k.pdf) 2020
  - Binghong Chen, Chengtao Li, Hanjun Dai, Le Song 
  - Key: chemical retrosynthetic planning, neural-based A*-like algorithm, ANDOR tree
  - ExpEnv: USPTO datasets
  - [Code](https://github.com/binghong-ml/retro_star)
#### ICLR
- [Become a Proficient Player with Limited Data through Watching Pure Videos](https://openreview.net/pdf?id=Sy-o2N0hF4f) 2023
  - Weirui Ye, Yunsheng Zhang, Pieter Abbeel, Yang Gao
  - Key: pre-training from action-free videos, forward-inverse cycle consistency (FICC) objective based on vector quantization, pre-training phase, fine-tuning phase.
  - ExpEnv: Atari
- [Policy-Based Self-Competition for Planning Problems](https://arxiv.org/abs/2306.04403) 2023
  - Jonathan Pirnay, Quirin Göttl, Jakob Burger, Dominik Gerhard Grimm
  - Key: self-competition, find strong trajectories by planning against possible strategies of its past self.
  - ExpEnv: Traveling Salesman Problem and the Job-Shop Scheduling Problem.
- [Explaining Temporal Graph Models through an Explorer-Navigator Framework](https://openreview.net/pdf?id=BR_ZhvcYbGJ) 2023
  - Wenwen Xia, Mincai Lai, Caihua Shan, Yao Zhang, Xinnan Dai, Xiang Li, Dongsheng Li
  - Key: Temporal GNN Explainer, an explorer to find the event subsets with MCTS, a navigator that learns the correlations between events and helps reduce the search space.
  - ExpEnv: Wikipedia and Reddit, Synthetic datasets
- [SpeedyZero: Mastering Atari with Limited Data and Time](https://openreview.net/pdf?id=Mg5CLXZgvLJ) 2023
  - Yixuan Mei, Jiaxuan Gao, Weirui Ye, Shaohuai Liu, Yang Gao, Yi Wu
  - Key: distributed RL system, Priority Refresh, Clipped LARS
  - ExpEnv: Atari
- [Efficient Offline Policy Optimization with a Learned Model](https://openreview.net/pdf?id=Yt-yM-JbYFO) 2023
  - Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng YAN, Zhongwen Xu
  - Key: Regularized One-Step Model-based algorithm for Offline-RL
  - ExpEnv: Atari,BSuite
  - [Code](https://github.com/sail-sg/rosmo/tree/main)
- [Enabling Arbitrary Translation Objectives with Adaptive Tree Search](https://arxiv.org/pdf/2202.11444.pdf) 2022
  - Wang Ling, Wojciech Stokowiec, Domenic Donato, Chris Dyer, Lei Yu, Laurent Sartran, Austin Matthews
  - Key: adaptive tree search, translation models, autoregressive models, 
  - ExpEnv: Chinese–English and Pashto–English tasks from WMT2020, German–English from WMT2014
- [What's Wrong with Deep Learning in Tree Search for Combinatorial Optimization](https://arxiv.org/abs/2201.10494) 2022
  - Maximili1an Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, Tobias Friedrich
  - Key: Combinatorial optimization, open-source benchmark suite for the NP-hard MAXIMUM INDEPENDENT SET problem, an in-depth analysis of the popular guided tree search algorithm,  compare the tree search implementations to other solvers
  - ExpEnv: NP-hard MAXIMUM INDEPENDENT SET.
  - [Code](https://github.com/maxiboether/mis-benchmark-framework)
- [Monte-Carlo Planning and Learning with Language Action Value Estimates](https://openreview.net/pdf?id=7_G8JySGecm) 2021
  - Youngsoo Jang, Seokin Seo, Jongmin Lee, Kee-Eung Kim
  - Key: Monte-Carlo tree search with language-driven exploration, locally optimistic language value estimates,
  - ExpEnv: Interactive Fiction (IF) games
- [Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design](https://arxiv.org/abs/2006.10504) 2021
  - Xiufeng Yang, Tanuj Kr Aasawat, Kazuki Yoshizoe
  - Key: massively parallel Monte-Carlo Tree Search, molecular design, Hash-driven parallel search, 
  - ExpEnv:  octanol-water partition coefficient (logP) penalized by the synthetic accessibility (SA) and large Ring Penalty score.
- [Watch the Unobserved: A Simple Approach to Parallelizing Monte Carlo Tree Search](https://arxiv.org/pdf/1810.11755.pdf) 2020
  - Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, Ji Liu
  - Key: parallel Monte-Carlo Tree Search, partition the tree into sub-trees efficiently, compare the observation ratio of each processor
  - ExpEnv: speedup and performance comparison on JOY-CITY game, average episode return on atari game
  - [Code](https://github.com/liuanji/WU-UCT)
- [Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees](https://openreview.net/pdf?id=rJgJDAVKvB) 2020
  - Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song
  - Key: meta path planning algorithm, exploits a novel neural architecture which can learn promising search directions from problem structures.
  - ExpEnv: a 2d workspace with a 2 DoF (degrees of freedom) point robot, a 3 DoF stick robot and a 5 DoF snake robot
#### NeurIPS

- [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://openreview.net/pdf?id=oIUXpBnyjv) 2023
  - Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu, Hongsheng Li, Yu Liu
  - Key: the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios.
  - ExpEnv: ClassicControl, Box2D, Atari, MuJoCo, GoBigger, MiniGrid, TicTacToe, ConnectFour, Gomoku, 2048, etc.
- [Large Language Models as Commonsense Knowledge for Large-Scale Task Planning](https://openreview.net/pdf?id=Wjp1AYB8lH) 2023
  - Zirui Zhao, Wee Sun Lee, David Hsu
  - Key: world model (LLM) and the LLM-induced policy can be combined in MCTS, to scale up task planning.
  - ExpEnv: multiplication, travel planning, object rearrangement
- [Monte Carlo Tree Search with Boltzmann Exploration](https://openreview.net/pdf?id=NG4DaApavi) 2023
  - Michael Painter, Mohamed Baioumy, Nick Hawes, Bruno Lacerda
  - Key: Boltzmann exploration with MCTS, optimal actions for the maximum entropy objective do not necessarily correspond to optimal actions for the original objective, two improved algorithms.
  - ExpEnv: the Frozen Lake environment, the Sailing Problem, Go
- [Generalized Weighted Path Consistency for Mastering Atari Games](https://openreview.net/pdf?id=vHRLS8HhK1) 2023
  - Dengwei Zhao, Shikui Tu, Lei Xu
  - Key: Generalized Weighted Path Consistency, A weighting mechanism.
  - ExpEnv: Atari
- [Accelerating Monte Carlo Tree Search with Probability Tree State Abstraction](https://openreview.net/pdf?id=0zeLTZAqaJ) 2023
  - Yangqing Fu, Ming Sun, Buqing Nie, Yue Gao
  - Key: probability tree state abstraction, transitivity and aggregation error bound
  - ExpEnv: Atari, CartPole, LunarLander, Gomoku
- [Planning for Sample Efficient Imitation Learning](https://openreview.net/forum?id=BkN5UoAqF7) 2022
  - Zhao-Heng Yin, Weirui Ye, Qifeng Chen, Yang Gao
  - Key: Behavioral Cloning,Adversarial Imitation Learning (AIL),MCTS-based RL,
  - ExpEnv: DeepMind Control Suite
  - [Code](https://github.com/zhaohengyin/EfficientImitate)
- [Evaluation Beyond Task Performance: Analyzing Concepts in AlphaZero in Hex](https://openreview.net/pdf?id=dwKwB2Cd-Km) 2022 
  - Charles Lovering, Jessica Zosa Forde, George Konidaris, Ellie Pavlick, Michael L. Littman
  - Key: AlphaZero’s internal representations, model probing and behavioral tests, how these concepts are captured in the network.
  - ExpEnv: Hex
- [Are AlphaZero-like Agents Robust to Adversarial Perturbations?](https://openreview.net/pdf?id=yZ_JlZaOCzv) 2022
  - Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, 4 Cho-Jui Hsieh
  - Key:  adversarial states, first adversarial attack on Go AIs
  - ExpEnv: Go
- [Monte Carlo Tree Descent for Black-Box Optimization](https://openreview.net/pdf?id=FzdmrTUyZ4g) 2022
  - Yaoguang Zhai, Sicun Gao
  - Key: Black-Box Optimization, how to further integrate samplebased descent for faster optimization. 
  - ExpEnv: synthetic functions for nonlinear optimization, reinforcement learning problems in MuJoCo locomotion environments, and optimization problems in Neural Architecture Search (NAS).
- [Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization](https://openreview.net/pdf?id=SUzPos_pUC) 2022
  - Lei Song∗ , Ke Xue∗ , Xiaobin Huang, Chao Qian
  - Key:  a low-dimensional subspace via MCTS, optimizes in the subspace with any Bayesian optimization algorithm.
  - ExpEnv: NAS-bench problems and MuJoCo locomotion
- [Monte Carlo Tree Search With Iteratively Refining State Abstractions](https://proceedings.neurips.cc/paper/2021/file/9b0ead00a217ea2c12e06a72eec4923f-Paper.pdf) 2021
  - Samuel Sokota, Caleb Ho, Zaheen Ahmad, J. Zico Kolter
  - Key: stochastic environments, Progressive widening, abstraction refining,
  - ExpEnv:  Blackjack, Trap, five by five Go.
- [Deep Synoptic Monte Carlo Planning in Reconnaissance Blind Chess](https://proceedings.neurips.cc/paper/2021/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf) 2021
  - Gregory Clark
  - Key: imperfect information, belief state with an unweighted particle filter, a novel stochastic abstraction of information states.
  - ExpEnv:  reconnaissance blind chess
- [POLY-HOOT: Monte-Carlo Planning in Continuous Space MDPs with Non-Asymptotic Analysis](https://proceedings.neurips.cc/paper/2020/file/30de24287a6d8f07b37c716ad51623a7-Paper.pdf) 2020
  - Weichao Mao, Kaiqing Zhang, Qiaomin Xie, Tamer Ba¸sar
  - Key: continuous state-action spaces, Hierarchical Optimistic Optimization,
  - ExpEnv: CartPole, Inverted Pendulum, Swing-up, and LunarLander.
- [Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search](https://proceedings.neurips.cc/paper/2020/file/e2ce14e81dba66dbff9cbc35ecfdb704-Paper.pdf) 2020
  - Linnan Wang, Rodrigo Fonseca, Yuandong Tian
  - Key: learns the partition of the search space using a few samples, a nonlinear decision boundary and learns a local model to pick good candidates.
  - ExpEnv: MuJoCo locomotion tasks, Small-scale Benchmarks, 
- [Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions](https://arxiv.org/abs/1907.10154) 2020
  - Matthew Faw, Rajat Sen, Karthikeyan Shanmugam, Constantine Caramanis, Sanjay Shakkottai
  - Key: covariate shift problem, Mix&Match combines stochastic gradient descent (SGD) with optimistic tree search and model re-use (evolving partially trained models with samples from different mixture distributions)
  - [Code](https://github.com/matthewfaw/mixnmatch)

#### Other Conference or Journal
- [On Monte Carlo Tree Search and Reinforcement Learning](https://www.jair.org/index.php/jair/article/download/11099/26289/20632) Journal of Artificial Intelligence Research 2017.
- [Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search](https://arxiv.org/pdf/1906.06832) IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
</details>

## 反馈意见和贡献
- 有任何疑问或意见都可以在 github 上直接 [提出 issue](https://github.com/opendilab/LightZero/issues/new/choose)
- 或者联系我们的邮箱 (opendilab@pjlab.org.cn)

- 感谢所有的反馈意见,包括对算法和系统设计。这些反馈意见和建议都会让 LightZero 变得更好。 


## 引用

```latex
@misc{lightzero,
      title={LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios},
      author={Yazhe Niu and Yuan Pu and Zhenjie Yang and Xueyan Li and Tong Zhou and Jiyuan Ren and Shuai Hu and Hongsheng Li and Yu Liu},
      year={2023},
      eprint={2310.08348},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```

## 致谢
此算法库的实现部分基于以下 GitHub 仓库,非常感谢这些开创性工作:
- https://github.com/opendilab/DI-engine
- https://github.com/deepmind/mctx
- https://github.com/YeWR/EfficientZero
- https://github.com/werner-duvaud/muzero-general

特别感谢以下贡献者 [@PaParaZz1](https://github.com/PaParaZz1), [@karroyan](https://github.com/karroyan), [@nighood](https://github.com/nighood), 
[@jayyoung0802](https://github.com/jayyoung0802), [@timothijoe](https://github.com/timothijoe), [@TuTuHuss](https://github.com/TuTuHuss), [@HarryXuancy](https://github.com/HarryXuancy), [@puyuan1996](https://github.com/puyuan1996), [@HansBug](https://github.com/HansBug) 对本项目的贡献和支持。

感谢所有为此项目做出贡献的人:
<a href="https://github.com/opendilab/LightZero/graphs/contributors">
<img src="https://contrib.rocks/image?repo=opendilab/LightZero" />
</a>

## 许可证

本仓库中的所有代码都符合 [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)。

<p align="right">(<a href="#top">回到顶部</a>)</p>