|
from collections import namedtuple |
|
from typing import Optional, Any, List, Dict |
|
|
|
import numpy as np |
|
from ding.envs import BaseEnvManager |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, one_time_warning, get_rank, get_world_size, \ |
|
broadcast_object_list, allreduce_data |
|
from ding.worker.collector.base_serial_collector import ISerialCollector, CachePool, TrajBuffer, INF, \ |
|
to_tensor_transitions |
|
|
|
|
|
@SERIAL_COLLECTOR_REGISTRY.register('episode_alphazero') |
|
class AlphaZeroCollector(ISerialCollector): |
|
""" |
|
Overview: |
|
AlphaZero collector (n_episode). |
|
Interfaces: |
|
__init__, reset, reset_env, reset_policy, collect, close |
|
Property: |
|
envstep |
|
""" |
|
|
|
|
|
config = dict() |
|
|
|
def __init__( |
|
self, |
|
collect_print_freq: int = 100, |
|
env: BaseEnvManager = None, |
|
policy: namedtuple = None, |
|
tb_logger: 'SummaryWriter' = None, |
|
exp_name: Optional[str] = 'default_experiment', |
|
instance_name: Optional[str] = 'collector', |
|
env_config=None, |
|
) -> None: |
|
""" |
|
Overview: |
|
Init the AlphaZero collector according to input arguments. |
|
Arguments: |
|
- collect_print_freq (:obj:`int`): collect_print_frequency in terms of training_steps. |
|
- env (:obj:`BaseEnvManager`): The env for the collection, the BaseEnvManager object or \ |
|
its derivatives are supported. |
|
- policy (:obj:`Policy`): The policy to be collected. |
|
- tb_logger (:obj:`SummaryWriter`): Logger, defaultly set as 'SummaryWriter' for model summary. |
|
- instance_name (:obj:`Optional[str]`): Name of this instance. |
|
- exp_name (:obj:`str`): Experiment name, which is used to indicate output directory. |
|
- env_config: Config of environment |
|
""" |
|
self._exp_name = exp_name |
|
self._instance_name = instance_name |
|
self._collect_print_freq = collect_print_freq |
|
self._timer = EasyTimer() |
|
self._end_flag = False |
|
self._env_config = env_config |
|
|
|
self._rank = get_rank() |
|
self._world_size = get_world_size() |
|
if self._rank == 0: |
|
if tb_logger is not None: |
|
self._logger, _ = build_logger( |
|
path='./{}/log/{}'.format(self._exp_name, self._instance_name), |
|
name=self._instance_name, |
|
need_tb=False |
|
) |
|
self._tb_logger = tb_logger |
|
else: |
|
self._logger, self._tb_logger = build_logger( |
|
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name |
|
) |
|
else: |
|
self._logger, _ = build_logger( |
|
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False |
|
) |
|
self._tb_logger = None |
|
|
|
self.reset(policy, env) |
|
|
|
def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None: |
|
""" |
|
Overview: |
|
Reset the environment. |
|
If _env is None, reset the old environment. |
|
If _env is not None, replace the old environment in the collector with the new passed \ |
|
in environment and launch. |
|
Arguments: |
|
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ |
|
env_manager(BaseEnvManager) |
|
""" |
|
if _env is not None: |
|
self._env = _env |
|
self._env.launch() |
|
self._env_num = self._env.env_num |
|
else: |
|
self._env.reset() |
|
|
|
def reset_policy(self, _policy: Optional[namedtuple] = None) -> None: |
|
""" |
|
Overview: |
|
Reset the policy. |
|
If _policy is None, reset the old policy. |
|
If _policy is not None, replace the old policy in the collector with the new passed in policy. |
|
Arguments: |
|
- policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy |
|
""" |
|
assert hasattr(self, '_env'), "please set env first" |
|
if _policy is not None: |
|
self._policy = _policy |
|
self._default_n_episode = _policy.get_attribute('cfg').get('n_episode', None) |
|
self._on_policy = _policy.get_attribute('cfg').on_policy |
|
self._traj_len = INF |
|
self._logger.debug( |
|
'Set default n_episode mode(n_episode({}), env_num({}), traj_len({}))'.format( |
|
self._default_n_episode, self._env_num, self._traj_len |
|
) |
|
) |
|
self._policy.reset() |
|
|
|
def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None: |
|
""" |
|
Overview: |
|
Reset the environment and policy. |
|
If _env is None, reset the old environment. |
|
If _env is not None, replace the old environment in the collector with the new passed \ |
|
in environment and launch. |
|
If _policy is None, reset the old policy. |
|
If _policy is not None, replace the old policy in the collector with the new passed in policy. |
|
Arguments: |
|
- policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy |
|
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ |
|
env_manager(BaseEnvManager) |
|
""" |
|
if _env is not None: |
|
self.reset_env(_env) |
|
if _policy is not None: |
|
self.reset_policy(_policy) |
|
|
|
self._obs_pool = CachePool('obs', self._env_num, deepcopy=False) |
|
self._policy_output_pool = CachePool('policy_output', self._env_num) |
|
|
|
self._traj_buffer = {env_id: TrajBuffer(maxlen=self._traj_len) for env_id in range(self._env_num)} |
|
self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)} |
|
|
|
self._episode_info = [] |
|
self._total_envstep_count = 0 |
|
self._total_episode_count = 0 |
|
self._total_duration = 0 |
|
self._last_train_iter = 0 |
|
self._end_flag = False |
|
|
|
def _reset_stat(self, env_id: int) -> None: |
|
""" |
|
Overview: |
|
Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\ |
|
and env_info. Reset these states according to env_id. You can refer to base_serial_collector\ |
|
to get more messages. |
|
Arguments: |
|
- env_id (:obj:`int`): the id where we need to reset the collector's state |
|
""" |
|
self._traj_buffer[env_id].clear() |
|
self._obs_pool.reset(env_id) |
|
self._policy_output_pool.reset(env_id) |
|
self._env_info[env_id] = {'time': 0., 'step': 0} |
|
|
|
def close(self) -> None: |
|
""" |
|
Overview: |
|
Close the collector. If end_flag is False, close the environment, flush the tb_logger\ |
|
and close the tb_logger. |
|
""" |
|
if self._end_flag: |
|
return |
|
self._end_flag = True |
|
self._env.close() |
|
if self._tb_logger: |
|
self._tb_logger.flush() |
|
self._tb_logger.close() |
|
|
|
def collect(self, |
|
n_episode: Optional[int] = None, |
|
train_iter: int = 0, |
|
policy_kwargs: Optional[dict] = None) -> List[Any]: |
|
""" |
|
Overview: |
|
Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations |
|
Arguments: |
|
- n_episode (:obj:`int`): the number of collecting data episode |
|
- train_iter (:obj:`int`): the number of training iteration |
|
- policy_kwargs (:obj:`dict`): the keyword args for policy forward |
|
Returns: |
|
- return_data (:obj:`List`): A list containing collected episodes. |
|
""" |
|
if n_episode is None: |
|
if self._default_n_episode is None: |
|
raise RuntimeError("Please specify collect n_episode") |
|
else: |
|
n_episode = self._default_n_episode |
|
assert n_episode >= self._env_num, "Please make sure n_episode >= env_num{}/{}".format(n_episode, self._env_num) |
|
if policy_kwargs is None: |
|
policy_kwargs = {} |
|
temperature = policy_kwargs['temperature'] |
|
collected_episode = 0 |
|
collected_step = 0 |
|
return_data = [] |
|
ready_env_id = set() |
|
remain_episode = n_episode |
|
|
|
while True: |
|
with self._timer: |
|
|
|
obs = self._env.ready_obs |
|
new_available_env_id = set(obs.keys()).difference(ready_env_id) |
|
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode])) |
|
remain_episode -= min(len(new_available_env_id), remain_episode) |
|
obs_ = {env_id: obs[env_id] for env_id in ready_env_id} |
|
|
|
self._obs_pool.update(obs_) |
|
|
|
|
|
|
|
|
|
policy_output = self._policy.forward(obs_, temperature) |
|
self._policy_output_pool.update(policy_output) |
|
|
|
actions = {env_id: output['action'] for env_id, output in policy_output.items()} |
|
actions = to_ndarray(actions) |
|
|
|
|
|
|
|
timesteps = self._env.step(actions) |
|
|
|
interaction_duration = self._timer.value / len(timesteps) |
|
for env_id, timestep in timesteps.items(): |
|
with self._timer: |
|
if timestep.info.get('abnormal', False): |
|
|
|
|
|
self._env.reset({env_id: None}) |
|
self._policy.reset([env_id]) |
|
self._reset_stat(env_id) |
|
self._logger.info('Env{} returns a abnormal step, its info is {}'.format(env_id, timestep.info)) |
|
continue |
|
|
|
transition = self._policy.process_transition( |
|
self._obs_pool[env_id], self._policy_output_pool[env_id], timestep |
|
) |
|
transition['collect_iter'] = train_iter |
|
self._traj_buffer[env_id].append(transition) |
|
self._env_info[env_id]['step'] += 1 |
|
collected_step += 1 |
|
|
|
|
|
if timestep.done: |
|
transitions = to_tensor_transitions(self._traj_buffer[env_id]) |
|
|
|
transitions = self.reward_shaping(transitions, timestep.info['eval_episode_return']) |
|
|
|
return_data.append(transitions) |
|
self._traj_buffer[env_id].clear() |
|
|
|
self._env_info[env_id]['time'] += self._timer.value + interaction_duration |
|
if timestep.done: |
|
self._total_episode_count += 1 |
|
|
|
reward = timestep.info['eval_episode_return'] |
|
info = { |
|
'reward': reward, |
|
'time': self._env_info[env_id]['time'], |
|
'step': self._env_info[env_id]['step'], |
|
} |
|
collected_episode += 1 |
|
self._episode_info.append(info) |
|
self._policy.reset([env_id]) |
|
self._reset_stat(env_id) |
|
ready_env_id.remove(env_id) |
|
|
|
if collected_episode >= n_episode: |
|
break |
|
|
|
collected_duration = sum([d['time'] for d in self._episode_info]) |
|
|
|
if self._world_size > 1: |
|
collected_step = allreduce_data(collected_step, 'sum') |
|
collected_episode = allreduce_data(collected_episode, 'sum') |
|
collected_duration = allreduce_data(collected_duration, 'sum') |
|
self._total_envstep_count += collected_step |
|
self._total_episode_count += collected_episode |
|
self._total_duration += collected_duration |
|
|
|
|
|
self._output_log(train_iter) |
|
return return_data |
|
|
|
@property |
|
def envstep(self) -> int: |
|
""" |
|
Overview: |
|
Print the total envstep count. |
|
Return: |
|
- envstep (:obj:`int`): the total envstep count |
|
""" |
|
return self._total_envstep_count |
|
|
|
def close(self) -> None: |
|
""" |
|
Overview: |
|
Close the collector. If end_flag is False, close the environment, flush the tb_logger\ |
|
and close the tb_logger. |
|
""" |
|
if self._end_flag: |
|
return |
|
self._end_flag = True |
|
self._env.close() |
|
if self._tb_logger: |
|
self._tb_logger.flush() |
|
self._tb_logger.close() |
|
|
|
def __del__(self) -> None: |
|
""" |
|
Overview: |
|
Execute the close command and close the collector. __del__ is automatically called to \ |
|
destroy the collector instance when the collector finishes its work |
|
""" |
|
self.close() |
|
|
|
def _output_log(self, train_iter: int) -> None: |
|
""" |
|
Overview: |
|
Print the output log information. You can refer to Docs/Best Practice/How to understand\ |
|
training generated folders/Serial mode/log/collector for more details. |
|
Arguments: |
|
- train_iter (:obj:`int`): the number of training iteration. |
|
""" |
|
if self._rank != 0: |
|
return |
|
if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0: |
|
self._last_train_iter = train_iter |
|
episode_count = len(self._episode_info) |
|
envstep_count = sum([d['step'] for d in self._episode_info]) |
|
duration = sum([d['time'] for d in self._episode_info]) |
|
episode_reward = [d['reward'] for d in self._episode_info] |
|
self._total_duration += duration |
|
info = { |
|
'episode_count': episode_count, |
|
'envstep_count': envstep_count, |
|
'avg_envstep_per_episode': envstep_count / episode_count, |
|
'avg_envstep_per_sec': envstep_count / duration, |
|
'avg_episode_per_sec': episode_count / duration, |
|
'collect_time': duration, |
|
'reward_mean': np.mean(episode_reward), |
|
'reward_std': np.std(episode_reward), |
|
'reward_max': np.max(episode_reward), |
|
'reward_min': np.min(episode_reward), |
|
'total_envstep_count': self._total_envstep_count, |
|
'total_episode_count': self._total_episode_count, |
|
'total_duration': self._total_duration, |
|
} |
|
self._episode_info.clear() |
|
self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()]))) |
|
for k, v in info.items(): |
|
if k in ['each_reward']: |
|
continue |
|
self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter) |
|
if k in ['total_envstep_count']: |
|
continue |
|
self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count) |
|
|
|
def reward_shaping(self, transitions, eval_episode_return): |
|
""" |
|
Overview: |
|
Shape the reward according to the player. |
|
Return: |
|
- transitions: data transitions. |
|
""" |
|
reward = transitions[-1]['reward'] |
|
to_play = transitions[-1]['obs']['to_play'] |
|
for t in transitions: |
|
if t['obs']['to_play'] == -1: |
|
|
|
|
|
t['reward'] = eval_episode_return |
|
else: |
|
|
|
if t['obs']['to_play'] == to_play: |
|
t['reward'] = int(reward) |
|
else: |
|
t['reward'] = int(-reward) |
|
return transitions |
|
|