|
from easydict import EasyDict |
|
|
|
collector_env_num = 8 |
|
evaluator_env_num = 8 |
|
cartpole_r2d2_config = dict( |
|
exp_name='cartpole_r2d2_seed0', |
|
env=dict( |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
n_evaluator_episode=evaluator_env_num, |
|
stop_value=195, |
|
), |
|
policy=dict( |
|
cuda=False, |
|
priority=False, |
|
priority_IS_weight=False, |
|
model=dict( |
|
obs_shape=4, |
|
action_shape=2, |
|
encoder_hidden_size_list=[128, 128, 64], |
|
), |
|
discount_factor=0.995, |
|
nstep=5, |
|
burnin_step=2, |
|
|
|
|
|
|
|
learn_unroll_len=40, |
|
learn=dict( |
|
|
|
|
|
|
|
|
|
|
|
update_per_collect=5, |
|
batch_size=64, |
|
learning_rate=0.0005, |
|
target_update_theta=0.001, |
|
), |
|
collect=dict( |
|
|
|
|
|
|
|
|
|
|
|
n_sample=32, |
|
unroll_len=2 + 40, |
|
traj_len_inf=True, |
|
env_num=collector_env_num, |
|
), |
|
eval=dict(env_num=evaluator_env_num, evaluator=dict(eval_freq=30)), |
|
other=dict( |
|
eps=dict( |
|
type='exp', |
|
start=0.95, |
|
end=0.05, |
|
decay=10000, |
|
), replay_buffer=dict(replay_buffer_size=100000, ) |
|
), |
|
), |
|
) |
|
cartpole_r2d2_config = EasyDict(cartpole_r2d2_config) |
|
main_config = cartpole_r2d2_config |
|
cartpole_r2d2_create_config = dict( |
|
env=dict( |
|
type='cartpole', |
|
import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], |
|
), |
|
env_manager=dict(type='base'), |
|
policy=dict(type='r2d2'), |
|
) |
|
cartpole_r2d2_create_config = EasyDict(cartpole_r2d2_create_config) |
|
create_config = cartpole_r2d2_create_config |
|
|
|
if __name__ == "__main__": |
|
|
|
from ding.entry import serial_pipeline |
|
serial_pipeline((main_config, create_config), seed=0) |
|
|