|
from typing import List, Dict, Any, Tuple, Union, Optional |
|
from collections import namedtuple, deque |
|
import torch |
|
import copy |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \ |
|
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample |
|
|
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY, deep_merge_dicts |
|
from ding.utils.data import default_collate, default_decollate |
|
from ding.policy.base_policy import Policy |
|
from ding.policy.common_utils import default_preprocess_learn |
|
from ding.policy.command_mode_policy_instance import DummyCommandModePolicy |
|
|
|
|
|
@POLICY_REGISTRY.register('ppo_lstm') |
|
class PPOPolicy(Policy): |
|
r""" |
|
Overview: |
|
Policy class of PPO algorithm. |
|
""" |
|
config = dict( |
|
|
|
type='ppo_lstm', |
|
|
|
cuda=False, |
|
|
|
on_policy=True, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
nstep_return=False, |
|
nstep=3, |
|
learn=dict( |
|
|
|
|
|
|
|
update_per_collect=5, |
|
batch_size=64, |
|
learning_rate=0.001, |
|
|
|
|
|
|
|
|
|
value_weight=0.5, |
|
|
|
entropy_weight=0.01, |
|
|
|
clip_ratio=0.2, |
|
|
|
adv_norm=False, |
|
ignore_done=False, |
|
), |
|
collect=dict( |
|
|
|
|
|
|
|
unroll_len=1, |
|
|
|
|
|
|
|
|
|
discount_factor=0.99, |
|
|
|
gae_lambda=0.95, |
|
), |
|
eval=dict(), |
|
|
|
|
|
other=dict(replay_buffer=dict(replay_buffer_size=1000, ), ), |
|
) |
|
|
|
def _init_learn(self) -> None: |
|
r""" |
|
Overview: |
|
Learn mode init method. Called by ``self.__init__``. |
|
Init the optimizer, algorithm config and the main model. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO" |
|
|
|
for m in self._model.modules(): |
|
if isinstance(m, torch.nn.Conv2d): |
|
torch.nn.init.orthogonal_(m.weight) |
|
if isinstance(m, torch.nn.Linear): |
|
torch.nn.init.orthogonal_(m.weight) |
|
|
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
|
|
|
|
|
|
self._value_weight = self._cfg.learn.value_weight |
|
self._entropy_weight = self._cfg.learn.entropy_weight |
|
self._clip_ratio = self._cfg.learn.clip_ratio |
|
self._adv_norm = self._cfg.learn.adv_norm |
|
self._nstep = self._cfg.nstep |
|
self._nstep_return = self._cfg.nstep_return |
|
|
|
self._learn_model.reset() |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Arguments: |
|
- data (:obj:`dict`): Dict type data |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): |
|
Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \ |
|
adv_abs_max, approx_kl, clipfrac |
|
""" |
|
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
|
|
self._learn_model.train() |
|
|
|
if not self._nstep_return: |
|
output = self._learn_model.forward(data['obs']) |
|
adv = data['adv'] |
|
if self._adv_norm: |
|
|
|
adv = (adv - adv.mean()) / (adv.std() + 1e-8) |
|
return_ = data['value'] + adv |
|
|
|
ppodata = ppo_data( |
|
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, return_, |
|
data['weight'] |
|
) |
|
ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio) |
|
wv, we = self._value_weight, self._entropy_weight |
|
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss |
|
|
|
else: |
|
output = self._learn_model.forward(data['obs']) |
|
adv = data['adv'] |
|
if self._adv_norm: |
|
|
|
adv = (adv - adv.mean()) / (adv.std() + 1e-8) |
|
|
|
|
|
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight']) |
|
ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio) |
|
wv, we = self._value_weight, self._entropy_weight |
|
next_obs = data.get('next_obs') |
|
value_gamma = data.get('value_gamma') |
|
reward = data.get('reward') |
|
|
|
value = self._learn_model.forward(data['obs']) |
|
|
|
next_data = {'obs': next_obs} |
|
target_value = self._learn_model.forward(next_data['obs']) |
|
|
|
assert self._nstep > 1 |
|
td_data = v_nstep_td_data( |
|
value['value'], target_value['value'], reward.t(), data['done'], data['weight'], value_gamma |
|
) |
|
|
|
critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep) |
|
ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss']) |
|
ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss) |
|
total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss |
|
|
|
|
|
|
|
|
|
self._optimizer.zero_grad() |
|
total_loss.backward() |
|
self._optimizer.step() |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': total_loss.item(), |
|
'policy_loss': ppo_loss.policy_loss.item(), |
|
'value_loss': ppo_loss.value_loss.item(), |
|
'entropy_loss': ppo_loss.entropy_loss.item(), |
|
'adv_abs_max': adv.abs().max().item(), |
|
'approx_kl': ppo_info.approx_kl, |
|
'clipfrac': ppo_info.clipfrac, |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'optimizer': self._optimizer.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._optimizer.load_state_dict(state_dict['optimizer']) |
|
|
|
def _init_collect(self) -> None: |
|
r""" |
|
Overview: |
|
Collect mode init method. Called by ``self.__init__``. |
|
Init traj and unroll length, collect model. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') |
|
|
|
|
|
|
|
self._collect_model.reset() |
|
self._gamma = self._cfg.collect.discount_factor |
|
self._gae_lambda = self._cfg.collect.gae_lambda |
|
self._nstep = self._cfg.nstep |
|
self._nstep_return = self._cfg.nstep_return |
|
|
|
def _forward_collect(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Forward function of collect mode. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
""" |
|
Overview: |
|
Generate dict type transition data from inputs. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): Output of collect model, including at least ['action'] |
|
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\ |
|
(here 'obs' indicates obs after env step). |
|
Returns: |
|
- transition (:obj:`dict`): Dict type transition data. |
|
""" |
|
if not self._nstep_return: |
|
transition = { |
|
'obs': obs, |
|
'logit': model_output['logit'], |
|
'action': model_output['action'], |
|
'value': model_output['value'], |
|
'prev_state': model_output['prev_state'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
else: |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'logit': model_output['logit'], |
|
'action': model_output['action'], |
|
'prev_state': model_output['prev_state'], |
|
'value': model_output['value'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, data: deque) -> Union[None, List[Any]]: |
|
r""" |
|
Overview: |
|
Get the trajectory and calculate GAE, return one data to cache for next time calculation |
|
Arguments: |
|
- data (:obj:`deque`): The trajectory's cache |
|
Returns: |
|
- samples (:obj:`dict`): The training samples generated |
|
""" |
|
data = get_gae_with_default_last_value( |
|
data, |
|
data[-1]['done'], |
|
gamma=self._gamma, |
|
gae_lambda=self._gae_lambda, |
|
cuda=self._cuda, |
|
) |
|
|
|
if not self._nstep_return: |
|
return get_train_sample(data, self._unroll_len) |
|
else: |
|
return get_nstep_return_data(data, self._nstep) |
|
|
|
def _init_eval(self) -> None: |
|
r""" |
|
Overview: |
|
Evaluate mode init method. Called by ``self.__init__``. |
|
Init eval model with argmax strategy. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
|
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Forward function of eval mode, similar to ``self._forward_collect``. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data[0]) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None: |
|
self._eval_model.reset(data_id=data_id) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
return 'vac', ['ding.model.template.vac'] |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
return super()._monitor_vars_learn() + [ |
|
'policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac' |
|
] |
|
|
|
|
|
@POLICY_REGISTRY.register('ppo_lstm_command') |
|
class PPOCommandModePolicy(PPOPolicy, DummyCommandModePolicy): |
|
pass |
|
|