|
from easydict import EasyDict |
|
|
|
gym_hybrid_ddpg_config = dict( |
|
exp_name='gym_hybrid_ddpg_seed0', |
|
env=dict( |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
|
|
act_scale=True, |
|
env_id='Moving-v0', |
|
n_evaluator_episode=5, |
|
stop_value=1.8, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
priority=False, |
|
random_collect_size=0, |
|
action_space='hybrid', |
|
model=dict( |
|
obs_shape=10, |
|
action_shape=dict( |
|
action_type_shape=3, |
|
action_args_shape=2, |
|
), |
|
twin_critic=False, |
|
action_space='hybrid', |
|
), |
|
learn=dict( |
|
update_per_collect=10, |
|
batch_size=32, |
|
discount_factor=0.99, |
|
learning_rate_actor=0.0003, |
|
learning_rate_critic=0.001, |
|
actor_update_freq=1, |
|
noise=False, |
|
), |
|
collect=dict( |
|
n_sample=32, |
|
noise_sigma=0.1, |
|
collector=dict(collect_print_freq=1000, ), |
|
), |
|
eval=dict(evaluator=dict(eval_freq=1000, ), ), |
|
other=dict( |
|
eps=dict( |
|
type='exp', |
|
start=1., |
|
end=0.1, |
|
decay=100000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=100000, ), |
|
), |
|
), |
|
) |
|
gym_hybrid_ddpg_config = EasyDict(gym_hybrid_ddpg_config) |
|
main_config = gym_hybrid_ddpg_config |
|
|
|
gym_hybrid_ddpg_create_config = dict( |
|
env=dict( |
|
type='gym_hybrid', |
|
import_names=['dizoo.gym_hybrid.envs.gym_hybrid_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='ddpg'), |
|
) |
|
gym_hybrid_ddpg_create_config = EasyDict(gym_hybrid_ddpg_create_config) |
|
create_config = gym_hybrid_ddpg_create_config |
|
|
|
if __name__ == "__main__": |
|
|
|
from ding.entry import serial_pipeline |
|
serial_pipeline([main_config, create_config], seed=0, max_env_step=int(1e7)) |
|
|