|
import copy |
|
import os |
|
from typing import Dict, Optional |
|
|
|
import gym |
|
import gym_hybrid |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from easydict import EasyDict |
|
from matplotlib import animation |
|
|
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.envs.common import affine_transform |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
|
|
|
|
@ENV_REGISTRY.register('gym_hybrid') |
|
class GymHybridEnv(BaseEnv): |
|
default_env_id = ['Sliding-v0', 'Moving-v0', 'HardMove-v0'] |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
config = dict( |
|
env_id='Moving-v0', |
|
act_scale=True, |
|
) |
|
|
|
def __init__(self, cfg: EasyDict) -> None: |
|
self._cfg = cfg |
|
self._env_id = cfg.env_id |
|
assert self._env_id in self.default_env_id |
|
self._act_scale = cfg.act_scale |
|
self._replay_path = None |
|
self._save_replay = False |
|
self._save_replay_count = 0 |
|
self._init_flag = False |
|
|
|
def reset(self) -> np.ndarray: |
|
if not self._init_flag: |
|
if self._env_id == 'HardMove-v0': |
|
self._env = gym.make(self._env_id, num_actuators=self._cfg.num_actuators) |
|
else: |
|
self._env = gym.make(self._env_id) |
|
self._observation_space = self._env.observation_space |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
self._eval_episode_return = 0 |
|
obs = self._env.reset() |
|
obs = to_ndarray(obs).astype(np.float32) |
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: Dict) -> BaseEnvTimestep: |
|
if self._act_scale: |
|
if self._env_id == 'HardMove-v0': |
|
action = [ |
|
action['action_type'], [affine_transform(i, min_val=-1, max_val=1) for i in action['action_args']] |
|
] |
|
else: |
|
|
|
action['action_args'][0] = affine_transform(action['action_args'][0], min_val=0, max_val=1) |
|
|
|
|
|
action['action_args'][1] = affine_transform(action['action_args'][1], min_val=-1, max_val=1) |
|
action = [action['action_type'], action['action_args']] |
|
if self._save_replay: |
|
self._frames.append(self._env.render(mode='rgb_array')) |
|
obs, rew, done, info = self._env.step(action) |
|
|
|
obs = to_ndarray(obs) |
|
if isinstance(obs, list): |
|
for i in range(len(obs)): |
|
if len(obs[i].shape) == 0: |
|
obs[i] = np.array([obs[i]]) |
|
obs = np.concatenate(obs) |
|
assert isinstance(obs, np.ndarray) and obs.shape == (10, ) |
|
obs = obs.astype(np.float32) |
|
|
|
rew = to_ndarray([rew]) |
|
if isinstance(rew, list): |
|
rew = rew[0] |
|
assert isinstance(rew, np.ndarray) and rew.shape == (1, ) |
|
self._eval_episode_return += rew.item() |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
if self._save_replay: |
|
if self._env_id == 'HardMove-v0': |
|
self._env_id = f'hardmove_n{self._cfg.num_actuators}' |
|
path = os.path.join( |
|
self._replay_path, '{}_episode_{}.gif'.format(self._env_id, self._save_replay_count) |
|
) |
|
self.display_frames_as_gif(self._frames, path) |
|
self._frames = [] |
|
self._save_replay_count += 1 |
|
info['action_args_mask'] = np.array([[1, 0], [0, 1], [0, 0]]) |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def random_action(self) -> Dict: |
|
|
|
|
|
|
|
|
|
raw_action = self._action_space.sample() |
|
return {'action_type': raw_action[0], 'action_args': raw_action[1]} |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine gym hybrid Env" |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: |
|
if replay_path is None: |
|
replay_path = './video' |
|
self._replay_path = replay_path |
|
self._save_replay = True |
|
self._save_replay_count = 0 |
|
self._frames = [] |
|
|
|
@staticmethod |
|
def display_frames_as_gif(frames: list, path: str) -> None: |
|
patch = plt.imshow(frames[0]) |
|
plt.axis('off') |
|
|
|
def animate(i): |
|
patch.set_data(frames[i]) |
|
|
|
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=5) |
|
anim.save(path, writer='imagemagick', fps=20) |
|
|