zjowowen's picture
init space
079c32c
raw
history blame
5.95 kB
import copy
import os
from typing import Dict, Optional
import gym
import gym_hybrid
import matplotlib.pyplot as plt
import numpy as np
from easydict import EasyDict
from matplotlib import animation
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.envs.common import affine_transform
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
@ENV_REGISTRY.register('gym_hybrid')
class GymHybridEnv(BaseEnv):
default_env_id = ['Sliding-v0', 'Moving-v0', 'HardMove-v0']
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
config = dict(
env_id='Moving-v0',
act_scale=True,
)
def __init__(self, cfg: EasyDict) -> None:
self._cfg = cfg
self._env_id = cfg.env_id
assert self._env_id in self.default_env_id
self._act_scale = cfg.act_scale
self._replay_path = None
self._save_replay = False
self._save_replay_count = 0
self._init_flag = False
def reset(self) -> np.ndarray:
if not self._init_flag:
if self._env_id == 'HardMove-v0':
self._env = gym.make(self._env_id, num_actuators=self._cfg.num_actuators)
else:
self._env = gym.make(self._env_id)
self._observation_space = self._env.observation_space
self._action_space = self._env.action_space
self._reward_space = gym.spaces.Box(
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
self._eval_episode_return = 0
obs = self._env.reset()
obs = to_ndarray(obs).astype(np.float32)
return obs
def close(self) -> None:
if self._init_flag:
self._env.close()
self._init_flag = False
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def step(self, action: Dict) -> BaseEnvTimestep:
if self._act_scale:
if self._env_id == 'HardMove-v0':
action = [
action['action_type'], [affine_transform(i, min_val=-1, max_val=1) for i in action['action_args']]
]
else:
# acceleration_value.
action['action_args'][0] = affine_transform(action['action_args'][0], min_val=0, max_val=1)
# rotation_value. Following line can be omitted, because in the affine_transform function,
# we have already done the clip(-1,1) operation
action['action_args'][1] = affine_transform(action['action_args'][1], min_val=-1, max_val=1)
action = [action['action_type'], action['action_args']]
if self._save_replay:
self._frames.append(self._env.render(mode='rgb_array'))
obs, rew, done, info = self._env.step(action)
obs = to_ndarray(obs)
if isinstance(obs, list): # corner case
for i in range(len(obs)):
if len(obs[i].shape) == 0:
obs[i] = np.array([obs[i]])
obs = np.concatenate(obs)
assert isinstance(obs, np.ndarray) and obs.shape == (10, )
obs = obs.astype(np.float32)
rew = to_ndarray([rew]) # wrapped to be transferred to a numpy array with shape (1,)
if isinstance(rew, list):
rew = rew[0]
assert isinstance(rew, np.ndarray) and rew.shape == (1, )
self._eval_episode_return += rew.item()
if done:
info['eval_episode_return'] = self._eval_episode_return
if self._save_replay:
if self._env_id == 'HardMove-v0':
self._env_id = f'hardmove_n{self._cfg.num_actuators}'
path = os.path.join(
self._replay_path, '{}_episode_{}.gif'.format(self._env_id, self._save_replay_count)
)
self.display_frames_as_gif(self._frames, path)
self._frames = []
self._save_replay_count += 1
info['action_args_mask'] = np.array([[1, 0], [0, 1], [0, 0]])
return BaseEnvTimestep(obs, rew, done, info)
def random_action(self) -> Dict:
# action_type: 0, 1, 2
# action_args:
# - acceleration_value: [0, 1]
# - rotation_value: [-1, 1]
raw_action = self._action_space.sample()
return {'action_type': raw_action[0], 'action_args': raw_action[1]}
def __repr__(self) -> str:
return "DI-engine gym hybrid Env"
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
if replay_path is None:
replay_path = './video'
self._replay_path = replay_path
self._save_replay = True
self._save_replay_count = 0
self._frames = []
@staticmethod
def display_frames_as_gif(frames: list, path: str) -> None:
patch = plt.imshow(frames[0])
plt.axis('off')
def animate(i):
patch.set_data(frames[i])
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=5)
anim.save(path, writer='imagemagick', fps=20)