gomoku / DI-engine /dizoo /box2d /lunarlander /config /lunarlander_r2d3_r2d2expert_config.py
zjowowen's picture
init space
079c32c
raw
history blame
6.99 kB
import os
from easydict import EasyDict
module_path = os.path.dirname(__file__)
collector_env_num = 8
evaluator_env_num = 8
expert_replay_buffer_size = int(5e3)
"""agent config"""
lunarlander_r2d3_config = dict(
exp_name='lunarlander_r2d3_r2d2expert_seed0',
env=dict(
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess'
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
env_id='LunarLander-v2',
n_evaluator_episode=8,
stop_value=200,
),
policy=dict(
cuda=True,
on_policy=False,
priority=True,
priority_IS_weight=True,
model=dict(
obs_shape=8,
action_shape=4,
encoder_hidden_size_list=[128, 128, 512],
),
discount_factor=0.997,
nstep=5,
burnin_step=2,
# (int) the whole sequence length to unroll the RNN network minus
# the timesteps of burnin part,
# i.e., <the whole sequence length> = <unroll_len> = <burnin_step> + <learn_unroll_len>
learn_unroll_len=40,
learn=dict(
# according to the r2d3 paper, actor parameter update interval is 400
# environment timesteps, and in per collect phase, we collect 32 sequence
# samples, the length of each samlpe sequence is <burnin_step> + <unroll_len>,
# which is 100 in our seeting, 32*100/400=8, so we set update_per_collect=8
# in most environments
value_rescale=True,
update_per_collect=8,
batch_size=64,
learning_rate=0.0005,
target_update_theta=0.001,
# DQFD related parameters
lambda1=1.0, # n-step return
lambda2=1.0, # supervised loss
lambda3=1e-5, # L2 it's very important to set Adam optimizer optim_type='adamw'.
lambda_one_step_td=1, # 1-step return
margin_function=0.8, # margin function in JE, here we implement this as a constant
per_train_iter_k=0, # TODO(pu)
),
collect=dict(
# NOTE: It is important that set key traj_len_inf=True here,
# to make sure self._traj_len=INF in serial_sample_collector.py.
# In R2D2 policy, for each collect_env, we want to collect data of length self._traj_len=INF
# unless the episode enters the 'done' state.
# In each collect phase, we collect a total of <n_sample> sequence samples.
n_sample=32,
traj_len_inf=True,
env_num=collector_env_num,
# The hyperparameter pho, the demo ratio, control the propotion of data coming\
# from expert demonstrations versus from the agent's own experience.
pho=1 / 4, # TODO(pu)
),
eval=dict(env_num=evaluator_env_num, ),
other=dict(
eps=dict(
type='exp',
start=0.95,
end=0.1,
decay=100000,
),
replay_buffer=dict(
replay_buffer_size=int(1e4),
# (Float type) How much prioritization is used: 0 means no prioritization while 1 means full prioritization
alpha=0.6, # priority exponent default=0.6
# (Float type) How much correction is used: 0 means no correction while 1 means full correction
beta=0.4,
)
),
),
)
lunarlander_r2d3_config = EasyDict(lunarlander_r2d3_config)
main_config = lunarlander_r2d3_config
lunarlander_r2d3_create_config = dict(
env=dict(
type='lunarlander',
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='r2d3'),
)
lunarlander_r2d3_create_config = EasyDict(lunarlander_r2d3_create_config)
create_config = lunarlander_r2d3_create_config
"""export config"""
expert_lunarlander_r2d3_config = dict(
exp_name='expert_lunarlander_r2d3_r2d2expert_seed0',
env=dict(
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess'
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=5,
stop_value=200,
),
policy=dict(
cuda=True,
on_policy=False,
priority=True,
model=dict(
obs_shape=8,
action_shape=4,
encoder_hidden_size_list=[128, 128, 512], # r2d2
),
discount_factor=0.997,
burnin_step=2,
nstep=5,
learn=dict(expert_replay_buffer_size=expert_replay_buffer_size, ),
collect=dict(
# NOTE: It is important that set key traj_len_inf=True here,
# to make sure self._traj_len=INF in serial_sample_collector.py.
# In R2D2 policy, for each collect_env, we want to collect data of length self._traj_len=INF
# unless the episode enters the 'done' state.
# In each collect phase, we collect a total of <n_sample> sequence samples.
n_sample=32,
traj_len_inf=True,
# Users should add their own model path here. Model path should lead to a model.
# Absolute path is recommended.
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``.
model_path='model_path_placeholder',
# Cut trajectories into pieces with length "unroll_len",
# which should set as self._sequence_len of r2d2
unroll_len=42, # NOTE: should equals self._sequence_len in r2d2 policy
env_num=collector_env_num,
),
eval=dict(env_num=evaluator_env_num, ),
other=dict(
replay_buffer=dict(
replay_buffer_size=expert_replay_buffer_size,
# (Float type) How much prioritization is used: 0 means no prioritization while 1 means full prioritization
alpha=0.9, # priority exponent default=0.6
# (Float type) How much correction is used: 0 means no correction while 1 means full correction
beta=0.4,
)
),
),
)
expert_lunarlander_r2d3_config = EasyDict(expert_lunarlander_r2d3_config)
expert_main_config = expert_lunarlander_r2d3_config
expert_lunarlander_r2d3_create_config = dict(
env=dict(
type='lunarlander',
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='r2d2_collect_traj'), # this policy is designed to collect r2d2 expert traj for r2d3
)
expert_lunarlander_r2d3_create_config = EasyDict(expert_lunarlander_r2d3_create_config)
expert_create_config = expert_lunarlander_r2d3_create_config
if __name__ == "__main__":
from ding.entry import serial_pipeline_r2d3
serial_pipeline_r2d3([main_config, create_config], [expert_main_config, expert_create_config], seed=0)