|
from easydict import EasyDict |
|
|
|
cuda = False |
|
multi_gpu = False |
|
|
|
main_config = dict( |
|
exp_name='pendulum_ibc_seed0', |
|
env=dict( |
|
evaluator_env_num=5, |
|
act_scale=True, |
|
n_evaluator_episode=5, |
|
stop_value=-250, |
|
), |
|
policy=dict( |
|
cuda=cuda, |
|
model=dict(obs_shape=3, action_shape=1, stochastic_optim=dict( |
|
type='mcmc', |
|
cuda=cuda, |
|
)), |
|
learn=dict( |
|
multi_gpu=multi_gpu, |
|
train_epoch=15, |
|
batch_size=256, |
|
optim=dict(learning_rate=1e-5, ), |
|
learner=dict(hook=dict(log_show_after_iter=1000)), |
|
), |
|
collect=dict( |
|
data_type='hdf5', |
|
data_path='./pendulum_sac_data_generation/expert_demos.hdf5', |
|
collector_logit=False, |
|
), |
|
eval=dict(evaluator=dict(eval_freq=-1, )), |
|
), |
|
) |
|
pendulum_ibc_config = EasyDict(main_config) |
|
main_config = pendulum_ibc_config |
|
|
|
pendulum_ibc_create_config = dict( |
|
env=dict( |
|
type='pendulum', |
|
import_names=['dizoo.classic_control.pendulum.envs.pendulum_env'], |
|
), |
|
env_manager=dict(type='base'), |
|
policy=dict( |
|
type='ibc', |
|
import_names=['ding.policy.ibc'], |
|
), |
|
) |
|
pendulum_ibc_create_config = EasyDict(pendulum_ibc_create_config) |
|
create_config = pendulum_ibc_create_config |
|
|