zjowowen's picture
init space
079c32c
raw
history blame
15.7 kB
import copy
import gym
import numpy as np
from ditk import logging
from typing import Union, Dict, AnyStr, Tuple, Optional
from gym.envs.registration import register
from metadrive.manager.traffic_manager import TrafficMode
from metadrive.obs.top_down_obs_multi_channel import TopDownMultiChannel
from metadrive.constants import RENDER_MODE_NONE, DEFAULT_AGENT, REPLAY_DONE, TerminationState
from metadrive.envs.base_env import BaseEnv
from metadrive.component.map.base_map import BaseMap
from metadrive.component.map.pg_map import parse_map_config, MapGenerateMethod
from metadrive.component.pgblock.first_block import FirstPGBlock
from metadrive.component.vehicle.base_vehicle import BaseVehicle
from metadrive.utils import Config, merge_dicts, get_np_random, clip
from metadrive.envs.base_env import BASE_DEFAULT_CONFIG
from metadrive.component.road_network import Road
from metadrive.component.algorithm.blocks_prob_dist import PGBlockDistConfig
METADRIVE_DEFAULT_CONFIG = dict(
# ===== Generalization =====
start_seed=0,
environment_num=10,
decision_repeat=20,
block_dist_config=PGBlockDistConfig,
# ===== Map Config =====
map=3, # int or string: an easy way to fill map_config
random_lane_width=False,
random_lane_num=False,
map_config={
BaseMap.GENERATE_TYPE: MapGenerateMethod.BIG_BLOCK_NUM,
BaseMap.GENERATE_CONFIG: None, # it can be a file path / block num / block ID sequence
BaseMap.LANE_WIDTH: 3.5,
BaseMap.LANE_NUM: 3,
"exit_length": 50,
},
# ===== Traffic =====
traffic_density=0.1,
need_inverse_traffic=False,
traffic_mode=TrafficMode.Trigger, # "Respawn", "Trigger"
random_traffic=False, # Traffic is randomized at default.
traffic_vehicle_config=dict(
show_navi_mark=False,
show_dest_mark=False,
enable_reverse=False,
show_lidar=False,
show_lane_line_detector=False,
show_side_detector=False,
),
# ===== Object =====
accident_prob=0., # accident may happen on each block with this probability, except multi-exits block
# ===== Others =====
use_AI_protector=False,
save_level=0.5,
is_multi_agent=False,
vehicle_config=dict(spawn_lane_index=(FirstPGBlock.NODE_1, FirstPGBlock.NODE_2, 0)),
# ===== Agent =====
random_spawn_lane_index=True,
target_vehicle_configs={
DEFAULT_AGENT: dict(
use_special_color=True,
spawn_lane_index=(FirstPGBlock.NODE_1, FirstPGBlock.NODE_2, 0),
)
},
# ===== Reward Scheme =====
# See: https://github.com/decisionforce/metadrive/issues/283
success_reward=10.0,
out_of_road_penalty=5.0,
crash_vehicle_penalty=5.0,
crash_object_penalty=5.0,
driving_reward=1.0,
speed_reward=0.1,
use_lateral_reward=False,
# ===== Cost Scheme =====
crash_vehicle_cost=1.0,
crash_object_cost=1.0,
out_of_road_cost=1.0,
# ===== Termination Scheme =====
out_of_route_done=False,
on_screen=False,
show_bird_view=False,
)
class MetaDrivePPOOriginEnv(BaseEnv):
@classmethod
def default_config(cls) -> "Config":
config = super(MetaDrivePPOOriginEnv, cls).default_config()
config.update(METADRIVE_DEFAULT_CONFIG)
config.register_type("map", str, int)
config["map_config"].register_type("config", None)
return config
def __init__(self, config: dict = None):
self.raw_cfg = config
self.default_config_copy = Config(self.default_config(), unchangeable=True)
self.init_flag = False
@property
def observation_space(self):
return gym.spaces.Box(0, 1, shape=(84, 84, 5), dtype=np.float32)
@property
def action_space(self):
return gym.spaces.Box(-1, 1, shape=(2, ), dtype=np.float32)
@property
def reward_space(self):
return gym.spaces.Box(-100, 100, shape=(1, ), dtype=np.float32)
def seed(self, seed, dynamic_seed=False):
# TODO implement dynamic_seed mechanism
super().seed(seed)
def reset(self):
if not self.init_flag:
super(MetaDrivePPOOriginEnv, self).__init__(self.raw_cfg)
self.start_seed = self.config["start_seed"]
self.env_num = self.config["environment_num"]
self.init_flag = True
obs = super().reset()
return obs
def _merge_extra_config(self, config: Union[dict, "Config"]) -> "Config":
config = self.default_config().update(config, allow_add_new_key=False)
if config["vehicle_config"]["lidar"]["distance"] > 50:
config["max_distance"] = config["vehicle_config"]["lidar"]["distance"]
return config
def _post_process_config(self, config):
config = super(MetaDrivePPOOriginEnv, self)._post_process_config(config)
if not config["rgb_clip"]:
logging.warning(
"You have set rgb_clip = False, which means the observation will be uint8 values in [0, 255]. "
"Please make sure you have parsed them later before feeding them to network!"
)
config["map_config"] = parse_map_config(
easy_map_config=config["map"], new_map_config=config["map_config"], default_config=self.default_config_copy
)
config["vehicle_config"]["rgb_clip"] = config["rgb_clip"]
config["vehicle_config"]["random_agent_model"] = config["random_agent_model"]
if config.get("gaussian_noise", 0) > 0:
assert config["vehicle_config"]["lidar"]["gaussian_noise"] == 0, "You already provide config!"
assert config["vehicle_config"]["side_detector"]["gaussian_noise"] == 0, "You already provide config!"
assert config["vehicle_config"]["lane_line_detector"]["gaussian_noise"] == 0, "You already provide config!"
config["vehicle_config"]["lidar"]["gaussian_noise"] = config["gaussian_noise"]
config["vehicle_config"]["side_detector"]["gaussian_noise"] = config["gaussian_noise"]
config["vehicle_config"]["lane_line_detector"]["gaussian_noise"] = config["gaussian_noise"]
if config.get("dropout_prob", 0) > 0:
assert config["vehicle_config"]["lidar"]["dropout_prob"] == 0, "You already provide config!"
assert config["vehicle_config"]["side_detector"]["dropout_prob"] == 0, "You already provide config!"
assert config["vehicle_config"]["lane_line_detector"]["dropout_prob"] == 0, "You already provide config!"
config["vehicle_config"]["lidar"]["dropout_prob"] = config["dropout_prob"]
config["vehicle_config"]["side_detector"]["dropout_prob"] = config["dropout_prob"]
config["vehicle_config"]["lane_line_detector"]["dropout_prob"] = config["dropout_prob"]
target_v_config = copy.deepcopy(config["vehicle_config"])
if not config["is_multi_agent"]:
target_v_config.update(config["target_vehicle_configs"][DEFAULT_AGENT])
config["target_vehicle_configs"][DEFAULT_AGENT] = target_v_config
return config
def step(self, actions: Union[np.ndarray, Dict[AnyStr, np.ndarray]]):
actions = self._preprocess_actions(actions)
engine_info = self._step_simulator(actions)
o, r, d, i = self._get_step_return(actions, engine_info=engine_info)
return o, r, d, i
def cost_function(self, vehicle_id: str):
vehicle = self.vehicles[vehicle_id]
step_info = dict()
step_info["cost"] = 0
if self._is_out_of_road(vehicle):
step_info["cost"] = self.config["out_of_road_cost"]
elif vehicle.crash_vehicle:
step_info["cost"] = self.config["crash_vehicle_cost"]
elif vehicle.crash_object:
step_info["cost"] = self.config["crash_object_cost"]
return step_info['cost'], step_info
def _is_out_of_road(self, vehicle):
ret = vehicle.on_yellow_continuous_line or vehicle.on_white_continuous_line or \
(not vehicle.on_lane) or vehicle.crash_sidewalk
if self.config["out_of_route_done"]:
ret = ret or vehicle.out_of_route
return ret
def done_function(self, vehicle_id: str):
vehicle = self.vehicles[vehicle_id]
done = False
done_info = {
TerminationState.CRASH_VEHICLE: False,
TerminationState.CRASH_OBJECT: False,
TerminationState.CRASH_BUILDING: False,
TerminationState.OUT_OF_ROAD: False,
TerminationState.SUCCESS: False,
TerminationState.MAX_STEP: False,
TerminationState.ENV_SEED: self.current_seed,
}
if self._is_arrive_destination(vehicle):
done = True
logging.info("Episode ended! Reason: arrive_dest.")
done_info[TerminationState.SUCCESS] = True
if self._is_out_of_road(vehicle):
done = True
logging.info("Episode ended! Reason: out_of_road.")
done_info[TerminationState.OUT_OF_ROAD] = True
if vehicle.crash_vehicle:
done = True
logging.info("Episode ended! Reason: crash vehicle ")
done_info[TerminationState.CRASH_VEHICLE] = True
if vehicle.crash_object:
done = True
done_info[TerminationState.CRASH_OBJECT] = True
logging.info("Episode ended! Reason: crash object ")
if vehicle.crash_building:
done = True
done_info[TerminationState.CRASH_BUILDING] = True
logging.info("Episode ended! Reason: crash building ")
if self.config["max_step_per_agent"] is not None and \
self.episode_lengths[vehicle_id] >= self.config["max_step_per_agent"]:
done = True
done_info[TerminationState.MAX_STEP] = True
logging.info("Episode ended! Reason: max step ")
if self.config["horizon"] is not None and \
self.episode_lengths[vehicle_id] >= self.config["horizon"] and not self.is_multi_agent:
# single agent horizon has the same meaning as max_step_per_agent
done = True
done_info[TerminationState.MAX_STEP] = True
logging.info("Episode ended! Reason: max step ")
done_info[TerminationState.CRASH] = (
done_info[TerminationState.CRASH_VEHICLE] or done_info[TerminationState.CRASH_OBJECT]
or done_info[TerminationState.CRASH_BUILDING]
)
return done, done_info
def reward_function(self, vehicle_id: str):
"""
Override this func to get a new reward function
:param vehicle_id: id of BaseVehicle
:return: reward
"""
vehicle = self.vehicles[vehicle_id]
step_info = dict()
# Reward for moving forward in current lane
if vehicle.lane in vehicle.navigation.current_ref_lanes:
current_lane = vehicle.lane
positive_road = 1
else:
current_lane = vehicle.navigation.current_ref_lanes[0]
current_road = vehicle.navigation.current_road
positive_road = 1 if not current_road.is_negative_road() else -1
long_last, _ = current_lane.local_coordinates(vehicle.last_position)
long_now, lateral_now = current_lane.local_coordinates(vehicle.position)
# reward for lane keeping, without it vehicle can learn to overtake but fail to keep in lane
if self.config["use_lateral_reward"]:
lateral_factor = clip(1 - 2 * abs(lateral_now) / vehicle.navigation.get_current_lane_width(), 0.0, 1.0)
else:
lateral_factor = 1.0
reward = 0.0
reward += self.config["driving_reward"] * (long_now - long_last) * lateral_factor * positive_road
reward += self.config["speed_reward"] * (vehicle.speed / vehicle.max_speed) * positive_road
step_info["step_reward"] = reward
if self._is_arrive_destination(vehicle):
reward = +self.config["success_reward"]
elif self._is_out_of_road(vehicle):
reward = -self.config["out_of_road_penalty"]
elif vehicle.crash_vehicle:
reward = -self.config["crash_vehicle_penalty"]
elif vehicle.crash_object:
reward = -self.config["crash_object_penalty"]
return reward, step_info
def _get_reset_return(self):
ret = {}
self.engine.after_step()
for v_id, v in self.vehicles.items():
self.observations[v_id].reset(self, v)
ret[v_id] = self.observations[v_id].observe(v)
return ret if self.is_multi_agent else self._wrap_as_single_agent(ret)
def switch_to_third_person_view(self) -> (str, BaseVehicle):
if self.main_camera is None:
return
self.main_camera.reset()
if self.config["prefer_track_agent"] is not None and self.config["prefer_track_agent"] in self.vehicles.keys():
new_v = self.vehicles[self.config["prefer_track_agent"]]
current_track_vehicle = new_v
else:
if self.main_camera.is_bird_view_camera():
current_track_vehicle = self.current_track_vehicle
else:
vehicles = list(self.engine.agents.values())
if len(vehicles) <= 1:
return
if self.current_track_vehicle in vehicles:
vehicles.remove(self.current_track_vehicle)
new_v = get_np_random().choice(vehicles)
current_track_vehicle = new_v
self.main_camera.track(current_track_vehicle)
return
def switch_to_top_down_view(self):
self.main_camera.stop_track()
def setup_engine(self):
super(MetaDrivePPOOriginEnv, self).setup_engine()
self.engine.accept("b", self.switch_to_top_down_view)
self.engine.accept("q", self.switch_to_third_person_view)
from metadrive.manager.traffic_manager import TrafficManager
from metadrive.manager.map_manager import MapManager
self.engine.register_manager("map_manager", MapManager())
self.engine.register_manager("traffic_manager", TrafficManager())
def _is_arrive_destination(self, vehicle):
long, lat = vehicle.navigation.final_lane.local_coordinates(vehicle.position)
flag = (vehicle.navigation.final_lane.length - 5 < long < vehicle.navigation.final_lane.length + 5) and (
vehicle.navigation.get_current_lane_width() / 2 >= lat >=
(0.5 - vehicle.navigation.get_current_lane_num()) * vehicle.navigation.get_current_lane_width()
)
return flag
def _reset_global_seed(self, force_seed=None):
"""
Current seed is set to force seed if force_seed is not None.
Otherwise, current seed is randomly generated.
"""
current_seed = force_seed if force_seed is not None else \
get_np_random(self._DEBUG_RANDOM_SEED).randint(self.start_seed, self.start_seed + self.env_num)
self.seed(current_seed)
def _get_observations(self):
return {DEFAULT_AGENT: self.get_single_observation(self.config["vehicle_config"])}
def get_single_observation(self, _=None):
return TopDownMultiChannel(
self.config["vehicle_config"],
self.config["on_screen"],
self.config["rgb_clip"],
frame_stack=3,
post_stack=10,
frame_skip=1,
resolution=(84, 84),
max_distance=36,
)
def clone(self, caller: str):
cfg = copy.deepcopy(self.raw_cfg)
return MetaDrivePPOOriginEnv(cfg)