|
from easydict import EasyDict |
|
|
|
tabmwp_prompt_pg_config = dict( |
|
exp_name='tabmwp_prompt_pg_seed0', |
|
env=dict( |
|
collector_env_num=1, |
|
evaluator_env_num=1, |
|
n_evaluator_episode=1, |
|
stop_value=1, |
|
cand_number=16, |
|
train_number=80, |
|
engine='text-davinci-002', |
|
temperature=0., |
|
max_tokens=512, |
|
top_p=1., |
|
frequency_penalty=0., |
|
presence_penalty=0., |
|
option_inds=["A", "B", "C", "D", "E", "F"], |
|
|
|
api_key='', |
|
enable_replay=True, |
|
prompt_format='TQ-A', |
|
seed=0, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
shot_number=2, |
|
model=dict( |
|
model_name="bert-base-uncased", |
|
add_linear=True, |
|
freeze_encoder=True, |
|
embedding_size=128, |
|
), |
|
learn=dict( |
|
batch_size=10, |
|
|
|
learning_rate=0.001, |
|
|
|
entropy_weight=0.001, |
|
weight_decay=5e-3, |
|
grad_norm=0.5, |
|
), |
|
collect=dict( |
|
|
|
n_sample=20, |
|
discount_factor=0., |
|
), |
|
eval=dict(evaluator=dict(eval_freq=500, )), |
|
), |
|
) |
|
main_config = EasyDict(tabmwp_prompt_pg_config) |
|
|
|
tabmwp_prompt_pg_config = dict( |
|
env=dict( |
|
type='tabmwp', |
|
import_names=['dizoo.tabmwp.envs.tabmwp_env'], |
|
), |
|
env_manager=dict(type='base'), |
|
policy=dict(type='prompt_pg'), |
|
replay_buffer=dict(type='naive'), |
|
) |
|
create_config = EasyDict(tabmwp_prompt_pg_config) |
|
|
|
if __name__ == '__main__': |
|
from ding.entry import serial_pipeline_onpolicy |
|
serial_pipeline_onpolicy((main_config, create_config), seed=0) |
|
|