gomoku / LightZero /lzero /mcts /buffer /game_buffer_muzero.py
zjowowen's picture
init space
079c32c
raw
history blame
No virus
36.2 kB
from typing import Any, List, Tuple, Union, TYPE_CHECKING, Optional
import numpy as np
import torch
from ding.utils import BUFFER_REGISTRY
from lzero.mcts.tree_search.mcts_ctree import MuZeroMCTSCtree as MCTSCtree
from lzero.mcts.tree_search.mcts_ptree import MuZeroMCTSPtree as MCTSPtree
from lzero.mcts.utils import prepare_observation
from lzero.policy import to_detach_cpu_numpy, concat_output, concat_output_value, inverse_scalar_transform
from .game_buffer import GameBuffer
if TYPE_CHECKING:
from lzero.policy import MuZeroPolicy, EfficientZeroPolicy, SampledEfficientZeroPolicy
@BUFFER_REGISTRY.register('game_buffer_muzero')
class MuZeroGameBuffer(GameBuffer):
"""
Overview:
The specific game buffer for MuZero policy.
"""
def __init__(self, cfg: dict):
super().__init__(cfg)
"""
Overview:
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
in the default configuration, the user-provided value will override the default configuration. Otherwise,
the default configuration will be used.
"""
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
assert self._cfg.env_type in ['not_board_games', 'board_games']
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
self.replay_buffer_size = self._cfg.replay_buffer_size
self.batch_size = self._cfg.batch_size
self._alpha = self._cfg.priority_prob_alpha
self._beta = self._cfg.priority_prob_beta
self.keep_ratio = 1
self.model_update_interval = 10
self.num_of_collected_episodes = 0
self.base_idx = 0
self.clear_time = 0
self.game_segment_buffer = []
self.game_pos_priorities = []
self.game_segment_game_pos_look_up = []
def sample(
self, batch_size: int, policy: Union["MuZeroPolicy", "EfficientZeroPolicy", "SampledEfficientZeroPolicy"]
) -> List[Any]:
"""
Overview:
sample data from ``GameBuffer`` and prepare the current and target batch for training.
Arguments:
- batch_size (:obj:`int`): batch size.
- policy (:obj:`Union["MuZeroPolicy", "EfficientZeroPolicy", "SampledEfficientZeroPolicy"]`): policy.
Returns:
- train_data (:obj:`List`): List of train data, including current_batch and target_batch.
"""
policy._target_model.to(self._cfg.device)
policy._target_model.eval()
# obtain the current_batch and prepare target context
reward_value_context, policy_re_context, policy_non_re_context, current_batch = self._make_batch(
batch_size, self._cfg.reanalyze_ratio
)
# target reward, target value
batch_rewards, batch_target_values = self._compute_target_reward_value(
reward_value_context, policy._target_model
)
# target policy
batch_target_policies_re = self._compute_target_policy_reanalyzed(policy_re_context, policy._target_model)
batch_target_policies_non_re = self._compute_target_policy_non_reanalyzed(
policy_non_re_context, self._cfg.model.action_space_size
)
# fusion of batch_target_policies_re and batch_target_policies_non_re to batch_target_policies
if 0 < self._cfg.reanalyze_ratio < 1:
batch_target_policies = np.concatenate([batch_target_policies_re, batch_target_policies_non_re])
elif self._cfg.reanalyze_ratio == 1:
batch_target_policies = batch_target_policies_re
elif self._cfg.reanalyze_ratio == 0:
batch_target_policies = batch_target_policies_non_re
target_batch = [batch_rewards, batch_target_values, batch_target_policies]
# a batch contains the current_batch and the target_batch
train_data = [current_batch, target_batch]
return train_data
def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]:
"""
Overview:
first sample orig_data through ``_sample_orig_data()``,
then prepare the context of a batch:
reward_value_context: the context of reanalyzed value targets
policy_re_context: the context of reanalyzed policy targets
policy_non_re_context: the context of non-reanalyzed policy targets
current_batch: the inputs of batch
Arguments:
- batch_size (:obj:`int`): the batch size of orig_data from replay buffer.
- reanalyze_ratio (:obj:`float`): ratio of reanalyzed policy (value is 100% reanalyzed)
Returns:
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch
"""
# obtain the batch context from replay buffer
orig_data = self._sample_orig_data(batch_size)
game_segment_list, pos_in_game_segment_list, batch_index_list, weights_list, make_time_list = orig_data
batch_size = len(batch_index_list)
obs_list, action_list, mask_list = [], [], []
# prepare the inputs of a batch
for i in range(batch_size):
game = game_segment_list[i]
pos_in_game_segment = pos_in_game_segment_list[i]
actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment +
self._cfg.num_unroll_steps].tolist()
# add mask for invalid actions (out of trajectory), 1 for valid, 0 for invalid
mask_tmp = [1. for i in range(len(actions_tmp))]
mask_tmp += [0. for _ in range(self._cfg.num_unroll_steps + 1 - len(mask_tmp))]
# pad random action
actions_tmp += [
np.random.randint(0, game.action_space_size)
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp))
]
# obtain the input observations
# pad if length of obs in game_segment is less than stack+num_unroll_steps
# e.g. stack+num_unroll_steps = 4+5
obs_list.append(
game_segment_list[i].get_unroll_obs(
pos_in_game_segment_list[i], num_unroll_steps=self._cfg.num_unroll_steps, padding=True
)
)
action_list.append(actions_tmp)
mask_list.append(mask_tmp)
# formalize the input observations
obs_list = prepare_observation(obs_list, self._cfg.model.model_type)
# formalize the inputs of a batch
current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list]
for i in range(len(current_batch)):
current_batch[i] = np.asarray(current_batch[i])
total_transitions = self.get_num_of_transitions()
# obtain the context of value targets
reward_value_context = self._prepare_reward_value_context(
batch_index_list, game_segment_list, pos_in_game_segment_list, total_transitions
)
"""
only reanalyze recent reanalyze_ratio (e.g. 50%) data
if self._cfg.reanalyze_outdated is True, batch_index_list is sorted according to its generated env_steps
0: reanalyze_num -> reanalyzed policy, reanalyze_num:end -> non reanalyzed policy
"""
reanalyze_num = int(batch_size * reanalyze_ratio)
# reanalyzed policy
if reanalyze_num > 0:
# obtain the context of reanalyzed policy targets
policy_re_context = self._prepare_policy_reanalyzed_context(
batch_index_list[:reanalyze_num], game_segment_list[:reanalyze_num],
pos_in_game_segment_list[:reanalyze_num]
)
else:
policy_re_context = None
# non reanalyzed policy
if reanalyze_num < batch_size:
# obtain the context of non-reanalyzed policy targets
policy_non_re_context = self._prepare_policy_non_reanalyzed_context(
batch_index_list[reanalyze_num:], game_segment_list[reanalyze_num:],
pos_in_game_segment_list[reanalyze_num:]
)
else:
policy_non_re_context = None
context = reward_value_context, policy_re_context, policy_non_re_context, current_batch
return context
def _prepare_reward_value_context(
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[Any],
total_transitions: int
) -> List[Any]:
"""
Overview:
prepare the context of rewards and values for calculating TD value target in reanalyzing part.
Arguments:
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
- game_segment_list (:obj:`list`): list of game segments
- pos_in_game_segment_list (:obj:`list`): list of transition index in game_segment
- total_transitions (:obj:`int`): number of collected transitions
Returns:
- reward_value_context (:obj:`list`): value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens,
td_steps_list, action_mask_segment, to_play_segment
"""
zero_obs = game_segment_list[0].zero_obs()
value_obs_list = []
# the value is valid or not (out of game_segment)
value_mask = []
rewards_list = []
game_segment_lens = []
# for board games
action_mask_segment, to_play_segment = [], []
td_steps_list = []
for game_segment, state_index, idx in zip(game_segment_list, pos_in_game_segment_list, batch_index_list):
game_segment_len = len(game_segment)
game_segment_lens.append(game_segment_len)
td_steps = np.clip(self._cfg.td_steps, 1, max(1, game_segment_len - state_index)).astype(np.int32)
# prepare the corresponding observations for bootstrapped values o_{t+k}
# o[t+ td_steps, t + td_steps + stack frames + num_unroll_steps]
# t=2+3 -> o[2+3, 2+3+4+5] -> o[5, 14]
game_obs = game_segment.get_unroll_obs(state_index + td_steps, self._cfg.num_unroll_steps)
rewards_list.append(game_segment.reward_segment)
# for board games
action_mask_segment.append(game_segment.action_mask_segment)
to_play_segment.append(game_segment.to_play_segment)
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
# get the <num_unroll_steps+1> bootstrapped target obs
td_steps_list.append(td_steps)
# index of bootstrapped obs o_{t+td_steps}
bootstrap_index = current_index + td_steps
if bootstrap_index < game_segment_len:
value_mask.append(1)
# beg_index = bootstrap_index - (state_index + td_steps), max of beg_index is num_unroll_steps
beg_index = current_index - state_index
end_index = beg_index + self._cfg.model.frame_stack_num
# the stacked obs in time t
obs = game_obs[beg_index:end_index]
else:
value_mask.append(0)
obs = zero_obs
value_obs_list.append(obs)
reward_value_context = [
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list,
action_mask_segment, to_play_segment
]
return reward_value_context
def _prepare_policy_non_reanalyzed_context(
self, batch_index_list: List[int], game_segment_list: List[Any], pos_in_game_segment_list: List[int]
) -> List[Any]:
"""
Overview:
prepare the context of policies for calculating policy target in non-reanalyzing part, just return the policy in self-play
Arguments:
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
- game_segment_list (:obj:`list`): list of game segments
- pos_in_game_segment_list (:obj:`list`): list transition index in game
Returns:
- policy_non_re_context (:obj:`list`): pos_in_game_segment_list, child_visits, game_segment_lens, action_mask_segment, to_play_segment
"""
child_visits = []
game_segment_lens = []
# for board games
action_mask_segment, to_play_segment = [], []
for game_segment, state_index, idx in zip(game_segment_list, pos_in_game_segment_list, batch_index_list):
game_segment_len = len(game_segment)
game_segment_lens.append(game_segment_len)
# for board games
action_mask_segment.append(game_segment.action_mask_segment)
to_play_segment.append(game_segment.to_play_segment)
child_visits.append(game_segment.child_visit_segment)
policy_non_re_context = [
pos_in_game_segment_list, child_visits, game_segment_lens, action_mask_segment, to_play_segment
]
return policy_non_re_context
def _prepare_policy_reanalyzed_context(
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[str]
) -> List[Any]:
"""
Overview:
prepare the context of policies for calculating policy target in reanalyzing part.
Arguments:
- batch_index_list (:obj:'list'): start transition index in the replay buffer
- game_segment_list (:obj:'list'): list of game segments
- pos_in_game_segment_list (:obj:'list'): position of transition index in one game history
Returns:
- policy_re_context (:obj:`list`): policy_obs_list, policy_mask, pos_in_game_segment_list, indices,
child_visits, game_segment_lens, action_mask_segment, to_play_segment
"""
zero_obs = game_segment_list[0].zero_obs()
with torch.no_grad():
# for policy
policy_obs_list = []
policy_mask = []
# 0 -> Invalid target policy for padding outside of game segments,
# 1 -> Previous target policy for game segments.
rewards, child_visits, game_segment_lens = [], [], []
# for board games
action_mask_segment, to_play_segment = [], []
for game_segment, state_index in zip(game_segment_list, pos_in_game_segment_list):
game_segment_len = len(game_segment)
game_segment_lens.append(game_segment_len)
rewards.append(game_segment.reward_segment)
# for board games
action_mask_segment.append(game_segment.action_mask_segment)
to_play_segment.append(game_segment.to_play_segment)
child_visits.append(game_segment.child_visit_segment)
# prepare the corresponding observations
game_obs = game_segment.get_unroll_obs(state_index, self._cfg.num_unroll_steps)
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
if current_index < game_segment_len:
policy_mask.append(1)
beg_index = current_index - state_index
end_index = beg_index + self._cfg.model.frame_stack_num
obs = game_obs[beg_index:end_index]
else:
policy_mask.append(0)
obs = zero_obs
policy_obs_list.append(obs)
policy_re_context = [
policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens,
action_mask_segment, to_play_segment
]
return policy_re_context
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> Tuple[Any, Any]:
"""
Overview:
prepare reward and value targets from the context of rewards and values.
Arguments:
- reward_value_context (:obj:'list'): the reward value context
- model (:obj:'torch.tensor'):model of the target model
Returns:
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix
- batch_target_values (:obj:'np.ndarray): batch of value estimation
"""
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list, action_mask_segment, \
to_play_segment = reward_value_context # noqa
# transition_batch_size = game_segment_batch_size * (num_unroll_steps+1)
transition_batch_size = len(value_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
if self._cfg.model.continuous_action_space is True:
# when the action space of the environment is continuous, action_mask[:] is None.
action_mask = [
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size)
]
# NOTE: in continuous action space env: we set all legal_actions as -1
legal_actions = [
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size)
]
else:
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
batch_target_values, batch_rewards = [], []
with torch.no_grad():
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float()
# calculate the target value
m_output = model.initial_inference(m_obs)
if not model.training:
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
network_output.append(m_output)
# concat the output slices after model inference
if self._cfg.use_root_value:
# use the root values from MCTS, as in EfficiientZero
# the root values have limited improvement but require much more GPU actors;
_, reward_pool, policy_logits_pool, latent_state_roots = concat_output(
network_output, data_type='muzero'
)
reward_pool = reward_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * int(sum(action_mask[j]))
).astype(np.float32).tolist() for j in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
roots = MCTSCtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, reward_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, reward_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree(self._cfg).search(roots, model, latent_state_roots, to_play)
roots_values = roots.get_values()
value_list = np.array(roots_values)
else:
# use the predicted values
value_list = concat_output_value(network_output)
# get last state value
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
value_list = value_list.reshape(-1) * np.array(
[
self._cfg.discount_factor ** td_steps_list[i] if int(td_steps_list[i]) %
2 == 0 else -self._cfg.discount_factor ** td_steps_list[i]
for i in range(transition_batch_size)
]
)
else:
value_list = value_list.reshape(-1) * (
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list
)
value_list = value_list * np.array(value_mask)
value_list = value_list.tolist()
horizon_id, value_index = 0, 0
for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list,
pos_in_game_segment_list,
to_play_segment):
target_values = []
target_rewards = []
base_index = state_index
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
bootstrap_index = current_index + td_steps_list[value_index]
# for i, reward in enumerate(game.rewards[current_index:bootstrap_index]):
for i, reward in enumerate(reward_list[current_index:bootstrap_index]):
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
if to_play_list[base_index] == to_play_list[i]:
value_list[value_index] += reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += -reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += reward * self._cfg.discount_factor ** i
horizon_id += 1
if current_index < game_segment_len_non_re:
target_values.append(value_list[value_index])
target_rewards.append(reward_list[current_index])
else:
target_values.append(0)
target_rewards.append(0.0)
# TODO: check
# target_rewards.append(reward)
value_index += 1
batch_rewards.append(target_rewards)
batch_target_values.append(target_values)
batch_rewards = np.asarray(batch_rewards, dtype=object)
batch_target_values = np.asarray(batch_target_values, dtype=object)
return batch_rewards, batch_target_values
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray:
"""
Overview:
prepare policy targets from the reanalyzed context of policies
Arguments:
- policy_re_context (:obj:`List`): List of policy context to reanalyzed
Returns:
- batch_target_policies_re
"""
if policy_re_context is None:
return []
batch_target_policies_re = []
# for board games
policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens, action_mask_segment, \
to_play_segment = policy_re_context
# transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1)
transition_batch_size = len(policy_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
if self._cfg.model.continuous_action_space is True:
# when the action space of the environment is continuous, action_mask[:] is None.
action_mask = [
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size)
]
# NOTE: in continuous action space env: we set all legal_actions as -1
legal_actions = [
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size)
]
else:
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
with torch.no_grad():
policy_obs_list = prepare_observation(policy_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(policy_obs_list[beg_index:end_index]).to(self._cfg.device).float()
m_output = model.initial_inference(m_obs)
if not model.training:
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
network_output.append(m_output)
_, reward_pool, policy_logits_pool, latent_state_roots = concat_output(network_output, data_type='muzero')
reward_pool = reward_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
roots = MCTSCtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, reward_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, reward_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree(self._cfg).search(roots, model, latent_state_roots, to_play)
roots_legal_actions_list = legal_actions
roots_distributions = roots.get_distributions()
policy_index = 0
for state_index, game_index in zip(pos_in_game_segment_list, batch_index_list):
target_policies = []
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
distributions = roots_distributions[policy_index]
if policy_mask[policy_index] == 0:
# NOTE: the invalid padding target policy, O is to make sure the corresponding cross_entropy_loss=0
target_policies.append([0 for _ in range(self._cfg.model.action_space_size)])
else:
if distributions is None:
# if at some obs, the legal_action is None, add the fake target_policy
target_policies.append(
list(np.ones(self._cfg.model.action_space_size) / self._cfg.model.action_space_size)
)
else:
if self._cfg.action_type == 'fixed_action_space':
# for atari/classic_control/box2d environments that only have one player.
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
target_policies.append(policy)
else:
# for board games that have two players and legal_actions is dy
policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
# to make sure target_policies have the same dimension
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
policy_tmp[legal_action] = policy[index]
target_policies.append(policy_tmp)
policy_index += 1
batch_target_policies_re.append(target_policies)
batch_target_policies_re = np.array(batch_target_policies_re)
return batch_target_policies_re
def _compute_target_policy_non_reanalyzed(
self, policy_non_re_context: List[Any], policy_shape: Optional[int]
) -> np.ndarray:
"""
Overview:
prepare policy targets from the non-reanalyzed context of policies
Arguments:
- policy_non_re_context (:obj:`List`): List containing:
- pos_in_game_segment_list
- child_visits
- game_segment_lens
- action_mask_segment
- to_play_segment
- policy_shape: self._cfg.model.action_space_size
Returns:
- batch_target_policies_non_re
"""
batch_target_policies_non_re = []
if policy_non_re_context is None:
return batch_target_policies_non_re
pos_in_game_segment_list, child_visits, game_segment_lens, action_mask_segment, to_play_segment = policy_non_re_context
game_segment_batch_size = len(pos_in_game_segment_list)
transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
if self._cfg.model.continuous_action_space is True:
# when the action space of the environment is continuous, action_mask[:] is None.
action_mask = [
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size)
]
# NOTE: in continuous action space env: we set all legal_actions as -1
legal_actions = [
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size)
]
else:
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
with torch.no_grad():
policy_index = 0
# 0 -> Invalid target policy for padding outside of game segments,
# 1 -> Previous target policy for game segments.
policy_mask = []
for game_segment_len, child_visit, state_index in zip(game_segment_lens, child_visits,
pos_in_game_segment_list):
target_policies = []
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
if current_index < game_segment_len:
policy_mask.append(1)
# NOTE: child_visit is already a distribution
distributions = child_visit[current_index]
if self._cfg.action_type == 'fixed_action_space':
# for atari/classic_control/box2d environments that only have one player.
target_policies.append(distributions)
else:
# for board games that have two players.
policy_tmp = [0 for _ in range(policy_shape)]
for index, legal_action in enumerate(legal_actions[policy_index]):
# only the action in ``legal_action`` the policy logits is nonzero
policy_tmp[legal_action] = distributions[index]
target_policies.append(policy_tmp)
else:
# NOTE: the invalid padding target policy, O is to make sure the correspoding cross_entropy_loss=0
policy_mask.append(0)
target_policies.append([0 for _ in range(policy_shape)])
policy_index += 1
batch_target_policies_non_re.append(target_policies)
batch_target_policies_non_re = np.asarray(batch_target_policies_non_re)
return batch_target_policies_non_re
def update_priority(self, train_data: List[np.ndarray], batch_priorities: Any) -> None:
"""
Overview:
Update the priority of training data.
Arguments:
- train_data (:obj:`List[np.ndarray]`): training data to be updated priority.
- batch_priorities (:obj:`batch_priorities`): priorities to update to.
NOTE:
train_data = [current_batch, target_batch]
current_batch = [obs_list, action_list, improved_policy_list(only in Gumbel MuZero), mask_list, batch_index_list, weights, make_time_list]
"""
indices = train_data[0][-3]
metas = {'make_time': train_data[0][-1], 'batch_priorities': batch_priorities}
# only update the priorities for data still in replay buffer
for i in range(len(indices)):
if metas['make_time'][i] > self.clear_time:
idx, prio = indices[i], metas['batch_priorities'][i]
self.game_pos_priorities[idx] = prio