zjowowen's picture
init space
079c32c
raw
history blame
23 kB
"""
The Node, Roots class and related core functions for MuZero.
"""
import math
import random
from typing import List, Dict, Any, Tuple, Union
import numpy as np
import torch
from .minimax import MinMaxStats
class Node:
"""
Overview:
The base class of Node for MuZero.
"""
def __init__(self, prior: float, legal_actions: List = None, action_space_size: int = 9) -> None:
self.prior = prior
self.legal_actions = legal_actions
self.action_space_size = action_space_size
self.visit_count = 0
self.value_sum = 0
self.best_action = -1
self.to_play = -1 # default -1 means play_with_bot_mode
self.reward = 0
self.value_prefix = 0.0
self.children = {}
self.children_index = []
self.simulation_index = 0
self.batch_index = 0
self.parent_value_prefix = 0 # only used in update_tree_q method
def expand(self, to_play: int, simulation_index: int, batch_index: int, reward: float,
policy_logits: List[float]) -> None:
"""
Overview:
Expand the child nodes of the current node.
Arguments:
- to_play (:obj:`Class int`): which player to play the game in the current node.
- simulation_index (:obj:`Class int`): the x/first index of hidden state vector of the current node, i.e. the search depth.
- batch_index (:obj:`Class int`): the y/second index of hidden state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
- value_prefix: (:obj:`Class float`): the value prefix of the current node.
- policy_logits: (:obj:`Class List`): the policy logit of the child nodes.
"""
self.to_play = to_play
if self.legal_actions is None:
self.legal_actions = np.arange(len(policy_logits))
self.simulation_index = simulation_index
self.batch_index = batch_index
self.reward = reward
policy_values = torch.softmax(torch.tensor([policy_logits[a] for a in self.legal_actions]), dim=0).tolist()
policy = {a: policy_values[i] for i, a in enumerate(self.legal_actions)}
for action, prior in policy.items():
self.children[action] = Node(prior)
def add_exploration_noise(self, exploration_fraction: float, noises: List[float]) -> None:
"""
Overview:
add exploration noise to priors
Arguments:
- noises (:obj: list): length is len(self.legal_actions)
"""
for i, a in enumerate(self.legal_actions):
"""
i in index, a is action, e.g. self.legal_actions = [0,1,2,4,6,8], i=[0,1,2,3,4,5], a=[0,1,2,4,6,8]
"""
noise = noises[i]
child = self.get_child(a)
prior = child.prior
child.prior = prior * (1 - exploration_fraction) + noise * exploration_fraction
def compute_mean_q(self, is_root: int, parent_q: float, discount_factor: float) -> float:
"""
Overview:
Compute the mean q value of the current node.
Arguments:
- is_root (:obj:`int`): whether the current node is a root node.
- parent_q (:obj:`float`): the q value of the parent node.
- discount_factor (:obj:`float`): the discount_factor of reward.
"""
total_unsigned_q = 0.0
total_visits = 0
for a in self.legal_actions:
child = self.get_child(a)
if child.visit_count > 0:
true_reward = child.reward
# TODO(pu): why only one step bootstrap?
q_of_s_a = true_reward + discount_factor * child.value
total_unsigned_q += q_of_s_a
total_visits += 1
if is_root and total_visits > 0:
mean_q = total_unsigned_q / total_visits
else:
# TODO(pu): why parent_q?
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1)
return mean_q
def get_trajectory(self) -> List[Union[int, float]]:
"""
Overview:
Find the current best trajectory starts from the current node.
Outputs:
- traj: a vector of node index, which is the current best trajectory from this node.
"""
traj = []
node = self
best_action = node.best_action
while best_action >= 0:
traj.append(best_action)
node = node.get_child(best_action)
best_action = node.best_action
return traj
def get_children_distribution(self) -> List[Union[int, float]]:
if self.legal_actions == []:
return None
distribution = {a: 0 for a in self.legal_actions}
if self.expanded:
for a in self.legal_actions:
child = self.get_child(a)
distribution[a] = child.visit_count
# only take the visit counts
distribution = [v for k, v in distribution.items()]
return distribution
def get_child(self, action: Union[int, float]) -> "Node":
"""
Overview:
get children node according to the input action.
"""
if not isinstance(action, np.int64):
action = int(action)
return self.children[action]
@property
def expanded(self) -> bool:
return len(self.children) > 0
@property
def value(self) -> float:
"""
Overview:
Return the estimated value of the current root node.
"""
if self.visit_count == 0:
return 0
else:
return self.value_sum / self.visit_count
class Roots:
def __init__(self, root_num: int, legal_actions_list: List) -> None:
self.num = root_num
self.root_num = root_num
self.legal_actions_list = legal_actions_list # list of list
self.roots = []
for i in range(self.root_num):
if isinstance(legal_actions_list, list):
self.roots.append(Node(0, legal_actions_list[i]))
else:
self.roots.append(Node(0, np.arange(legal_actions_list)))
def prepare(
self,
root_noise_weight: float,
noises: List[float],
rewards: List[float],
policies: List[List[float]],
to_play: int = -1
) -> None:
"""
Overview:
Expand the roots and add noises.
Arguments:
- root_noise_weight: the exploration fraction of roots
- noises: the vector of noise add to the roots.
- rewards: the vector of rewards of each root.
- policies: the vector of policy logits of each root.
- to_play_batch: the vector of the player side of each root.
"""
for i in range(self.root_num):
if to_play is None:
self.roots[i].expand(-1, 0, i, rewards[i], policies[i])
else:
self.roots[i].expand(to_play[i], 0, i, rewards[i], policies[i])
self.roots[i].add_exploration_noise(root_noise_weight, noises[i])
self.roots[i].visit_count += 1
def prepare_no_noise(self, rewards: List[float], policies: List[List[float]], to_play: int = -1) -> None:
"""
Overview:
Expand the roots without noise.
Arguments:
- rewards: the vector of rewards of each root.
- policies: the vector of policy logits of each root.
- to_play_batch: the vector of the player side of each root.
"""
for i in range(self.root_num):
if to_play is None:
self.roots[i].expand(-1, 0, i, rewards[i], policies[i])
else:
self.roots[i].expand(to_play[i], 0, i, rewards[i], policies[i])
self.roots[i].visit_count += 1
def clear(self) -> None:
self.roots.clear()
def get_trajectories(self) -> List[List[Union[int, float]]]:
"""
Overview:
Find the current best trajectory starts from each root.
Outputs:
- traj: a vector of node index, which is the current best trajectory from each root.
"""
trajs = []
for i in range(self.root_num):
trajs.append(self.roots[i].get_trajectory())
return trajs
def get_distributions(self) -> List[List[Union[int, float]]]:
"""
Overview:
Get the children distribution of each root.
Outputs:
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]).
"""
distributions = []
for i in range(self.root_num):
distributions.append(self.roots[i].get_children_distribution())
return distributions
def get_values(self) -> float:
"""
Overview:
Return the estimated value of each root.
"""
values = []
for i in range(self.root_num):
values.append(self.roots[i].value)
return values
class SearchResults:
def __init__(self, num: int) -> None:
self.num = num
self.nodes = []
self.search_paths = []
self.latent_state_index_in_search_path = []
self.latent_state_index_in_batch = []
self.last_actions = []
self.search_lens = []
def update_tree_q(root: Node, min_max_stats: MinMaxStats, discount_factor: float, players: int = 1) -> None:
"""
Overview:
Update the value sum and visit count of nodes along the search path.
Arguments:
- search_path: a vector of nodes on the search path.
- min_max_stats: a tool used to min-max normalize the q value.
- to_play: which player to play the game in the current node.
- value: the value to propagate along the search path.
- discount_factor: the discount factor of reward.
"""
node_stack = []
node_stack.append(root)
while len(node_stack) > 0:
node = node_stack[-1]
node_stack.pop()
if node != root:
true_reward = node.reward
if players == 1:
q_of_s_a = true_reward + discount_factor * node.value
elif players == 2:
q_of_s_a = true_reward + discount_factor * (-node.value)
min_max_stats.update(q_of_s_a)
for a in node.legal_actions:
child = node.get_child(a)
if child.expanded:
node_stack.append(child)
def select_child(
root: Node, min_max_stats: MinMaxStats, pb_c_base: float, pb_c_int: float, discount_factor: float,
mean_q: float, players: int
) -> Union[int, float]:
"""
Overview:
Select the child node of the roots according to ucb scores.
Arguments:
- root: the roots to select the child node.
- min_max_stats (:obj:`Class MinMaxStats`): a tool used to min-max normalize the score.
- pb_c_base (:obj:`Class Float`): constant c1 used in pUCT rule, typically 1.25.
- pb_c_int (:obj:`Class Float`): constant c2 used in pUCT rule, typically 19652.
- discount_factor (:obj:`Class Float`): The discount factor used in calculating bootstrapped value, if env is board_games, we set discount_factor=1.
- mean_q (:obj:`Class Float`): the mean q value of the parent node.
- players (:obj:`Class Int`): the number of players. one/in self-play-mode board games.
Returns:
- action (:obj:`Union[int, float]`): Choose the action with the highest ucb score.
"""
max_score = -np.inf
epsilon = 0.000001
max_index_lst = []
for a in root.legal_actions:
child = root.get_child(a)
temp_score = compute_ucb_score(
child, min_max_stats, mean_q, root.visit_count, pb_c_base, pb_c_int, discount_factor, players
)
if max_score < temp_score:
max_score = temp_score
max_index_lst.clear()
max_index_lst.append(a)
elif temp_score >= max_score - epsilon:
# NOTE: if the difference is less than epsilon = 0.000001, we random choice action from max_index_lst
max_index_lst.append(a)
action = 0
if len(max_index_lst) > 0:
action = random.choice(max_index_lst)
return action
def compute_ucb_score(
child: Node,
min_max_stats: MinMaxStats,
parent_mean_q: float,
total_children_visit_counts: float,
pb_c_base: float,
pb_c_init: float,
discount_factor: float,
players: int = 1,
) -> float:
"""
Overview:
Compute the ucb score of the child.
Arguments:
- child: the child node to compute ucb score.
- min_max_stats: a tool used to min-max normalize the score.
- parent_mean_q: the mean q value of the parent node.
- is_reset: whether the value prefix needs to be reset.
- total_children_visit_counts: the total visit counts of the child nodes of the parent node.
- parent_value_prefix: the value prefix of parent node.
- pb_c_base: constants c2 in muzero.
- pb_c_init: constants c1 in muzero.
- disount_factor: the discount factor of reward.
- players: the number of players.
- continuous_action_space: whether the action space is continuous in current env.
Outputs:
- ucb_value: the ucb score of the child.
"""
pb_c = math.log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init
pb_c *= (math.sqrt(total_children_visit_counts) / (child.visit_count + 1))
prior_score = pb_c * child.prior
if child.visit_count == 0:
value_score = parent_mean_q
else:
true_reward = child.reward
if players == 1:
value_score = true_reward + discount_factor * child.value
elif players == 2:
value_score = true_reward + discount_factor * (-child.value)
value_score = min_max_stats.normalize(value_score)
if value_score < 0:
value_score = 0
if value_score > 1:
value_score = 1
ucb_score = prior_score + value_score
return ucb_score
def batch_traverse(
roots: Any,
pb_c_base: float,
pb_c_init: float,
discount_factor: float,
min_max_stats_lst: List[MinMaxStats],
results: SearchResults,
virtual_to_play: List,
) -> Tuple[List[None], List[None], List[None], list]:
"""
Overview:
traverse, also called expansion. process a batch roots parallelly.
Arguments:
- roots (:obj:`Any`): a batch of root nodes to be expanded.
- pb_c_base (:obj:`float`): constant c1 used in pUCT rule, typically 1.25.
- pb_c_init (:obj:`float`): constant c2 used in pUCT rule, typically 19652.
- discount_factor (:obj:`float`): The discount factor used in calculating bootstrapped value, if env is board_games, we set discount_factor=1.
- virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and training in board games,
`virtual` is to emphasize that actions are performed on an imaginary hidden state.
- continuous_action_space: whether the action space is continuous in current env.
Returns:
- latent_state_index_in_search_path (:obj:`list`): the list of x/first index of hidden state vector of the searched node, i.e. the search depth.
- latent_state_index_in_batch (:obj:`list`): the list of y/second index of hidden state vector of the searched node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``.
- last_actions (:obj:`list`): the action performed by the previous node.
- virtual_to_play (:obj:`list`): the to_play list used in self_play collecting and trainin gin board games,
`virtual` is to emphasize that actions are performed on an imaginary hidden state.
"""
parent_q = 0.0
results.search_lens = [None for _ in range(results.num)]
results.last_actions = [None for _ in range(results.num)]
results.nodes = [None for _ in range(results.num)]
results.latent_state_index_in_search_path = [None for _ in range(results.num)]
results.latent_state_index_in_batch = [None for _ in range(results.num)]
if virtual_to_play in [1, 2] or virtual_to_play[0] in [1, 2]:
players = 2
elif virtual_to_play in [-1, None] or virtual_to_play[0] in [-1, None]:
players = 1
results.search_paths = {i: [] for i in range(results.num)}
for i in range(results.num):
node = roots.roots[i]
is_root = 1
search_len = 0
results.search_paths[i].append(node)
"""
MCTS stage 1: Selection
Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l.
The leaf node is the node that is currently not expanded.
"""
while node.expanded:
mean_q = node.compute_mean_q(is_root, parent_q, discount_factor)
is_root = 0
parent_q = mean_q
# select action according to the pUCT rule.
action = select_child(
node, min_max_stats_lst.stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players
)
if players == 2:
# Players play turn by turn
if virtual_to_play[i] == 1:
virtual_to_play[i] = 2
else:
virtual_to_play[i] = 1
node.best_action = action
# move to child node according to selected action.
node = node.get_child(action)
last_action = action
results.search_paths[i].append(node)
search_len += 1
# note this return the parent node of the current searched node
parent = results.search_paths[i][len(results.search_paths[i]) - 1 - 1]
results.latent_state_index_in_search_path[i] = parent.simulation_index
results.latent_state_index_in_batch[i] = parent.batch_index
results.last_actions[i] = last_action
results.search_lens[i] = search_len
# while we break out the while loop, results.nodes[i] save the leaf node.
results.nodes[i] = node
# print(f'env {i} one simulation done!')
return results.latent_state_index_in_search_path, results.latent_state_index_in_batch, results.last_actions, virtual_to_play
def backpropagate(
search_path: List[Node], min_max_stats: MinMaxStats, to_play: int, value: float, discount_factor: float
) -> None:
"""
Overview:
Update the value sum and visit count of nodes along the search path.
Arguments:
- search_path: a vector of nodes on the search path.
- min_max_stats: a tool used to min-max normalize the q value.
- to_play: which player to play the game in the current node.
- value: the value to propagate along the search path.
- discount_factor: the discount factor of reward.
"""
assert to_play is None or to_play in [-1, 1, 2], to_play
if to_play is None or to_play == -1:
# for play-with-bot-mode
bootstrap_value = value
path_len = len(search_path)
for i in range(path_len - 1, -1, -1):
node = search_path[i]
node.value_sum += bootstrap_value
node.visit_count += 1
true_reward = node.reward
# TODO(pu): the effect of different ways to update min_max_stats
min_max_stats.update(true_reward + discount_factor * node.value)
bootstrap_value = true_reward + discount_factor * bootstrap_value
else:
# for self-play-mode
bootstrap_value = value
path_len = len(search_path)
for i in range(path_len - 1, -1, -1):
node = search_path[i]
# to_play related
node.value_sum += bootstrap_value if node.to_play == to_play else -bootstrap_value
node.visit_count += 1
# NOTE: in self-play-mode,
# we should calculate the true_reward according to the perspective of current player of node
# true_reward = node.value_prefix - (- parent_value_prefix)
true_reward = node.reward
# min_max_stats.update(true_reward + discount_factor * node.value)
min_max_stats.update(true_reward + discount_factor * -node.value)
# true_reward is in the perspective of current player of node
# bootstrap_value = (true_reward if node.to_play == to_play else - true_reward) + discount_factor * bootstrap_value
bootstrap_value = (
-true_reward if node.to_play == to_play else true_reward
) + discount_factor * bootstrap_value
def batch_backpropagate(
simulation_index: int,
discount_factor: float,
value_prefixs: List[float],
values: List[float],
policies: List[float],
min_max_stats_lst: List[MinMaxStats],
results: SearchResults,
to_play: list = None
) -> None:
"""
Overview:
Backpropagation along the search path to update the attributes.
Arguments:
- simulation_index (:obj:`Class Int`): The index of latent state of the leaf node in the search path.
- discount_factor (:obj:`Class Float`): The discount factor used in calculating bootstrapped value, if env is board_games, we set discount_factor=1.
- value_prefixs (:obj:`Class List`): the value prefixs of nodes along the search path.
- values (:obj:`Class List`): the values to propagate along the search path.
- policies (:obj:`Class List`): the policy logits of nodes along the search path.
- min_max_stats_lst (:obj:`Class List[MinMaxStats]`): a tool used to min-max normalize the q value.
- results (:obj:`Class List`): the search results.
- to_play (:obj:`Class List`): the batch of which player is playing on this node.
"""
for i in range(results.num):
# ****** expand the leaf node ******
if to_play is None:
# set to_play=-1, because in self-play-mode to_play = {1,2}
results.nodes[i].expand(-1, simulation_index, i, value_prefixs[i], policies[i])
else:
results.nodes[i].expand(to_play[i], simulation_index, i, value_prefixs[i], policies[i])
# ****** backpropagate ******
if to_play is None:
backpropagate(results.search_paths[i], min_max_stats_lst.stats_lst[i], 0, values[i], discount_factor)
else:
backpropagate(
results.search_paths[i], min_max_stats_lst.stats_lst[i], to_play[i], values[i], discount_factor
)