|
from typing import TYPE_CHECKING, List, Any, Union |
|
from easydict import EasyDict |
|
|
|
import numpy as np |
|
import torch |
|
import copy |
|
|
|
from lzero.policy import InverseScalarTransform, to_detach_cpu_numpy |
|
from lzero.mcts.ptree import MinMaxStatsList |
|
|
|
if TYPE_CHECKING: |
|
import lzero.mcts.ptree.ptree_sez as ptree |
|
|
|
|
|
|
|
|
|
import lzero.mcts.ptree.ptree_sez as tree_sez |
|
|
|
|
|
class SampledEfficientZeroMCTSPtree(object): |
|
""" |
|
Overview: |
|
MCTSPtree for Sampled EfficientZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in python. |
|
Interfaces: |
|
__init__, roots, search |
|
""" |
|
|
|
|
|
config = dict( |
|
|
|
root_dirichlet_alpha=0.3, |
|
|
|
root_noise_weight=0.25, |
|
|
|
pb_c_base=19652, |
|
|
|
pb_c_init=1.25, |
|
|
|
value_delta_max=0.01, |
|
) |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
def __init__(self, cfg: EasyDict = None) -> None: |
|
""" |
|
Overview: |
|
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key |
|
in the default configuration, the user-provided value will override the default configuration. Otherwise, |
|
the default configuration will be used. |
|
""" |
|
default_config = self.default_config() |
|
default_config.update(cfg) |
|
self._cfg = default_config |
|
self.inverse_scalar_transform_handle = InverseScalarTransform( |
|
self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution |
|
) |
|
|
|
@classmethod |
|
def roots( |
|
cls: int, root_num: int, legal_action_lis: List[Any], action_space_size: int, num_of_sampled_actions: int, |
|
continuous_action_space: bool |
|
) -> "ptree.Roots": |
|
""" |
|
Overview: |
|
Initialization of CNode with root_num, legal_actions_list, action_space_size, num_of_sampled_actions, continuous_action_space. |
|
Arguments: |
|
- root_num (:obj:'int'): the number of the current root. |
|
- legal_action_lis (:obj:'List'): the vector of the legal action of this root. |
|
- action_space_size (:obj:'int'): the size of action space of the current env. |
|
- num_of_sampled_actions (:obj:'int'): the number of sampled actions, i.e. K in the Sampled MuZero papers. |
|
- continuous_action_space (:obj:'bool'): whether the action space is continous in current env. |
|
""" |
|
import lzero.mcts.ptree.ptree_sez as ptree |
|
return ptree.Roots( |
|
root_num, legal_action_lis, action_space_size, num_of_sampled_actions, continuous_action_space |
|
) |
|
|
|
def search( |
|
self, |
|
roots: Any, |
|
model: torch.nn.Module, |
|
latent_state_roots: List[Any], |
|
reward_hidden_state_roots: List[Any], |
|
to_play: Union[int, List[Any]] = -1 |
|
) -> None: |
|
""" |
|
Overview: |
|
Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference. |
|
Use the python ctree. |
|
Arguments: |
|
- roots (:obj:`Any`): a batch of expanded root nodes |
|
- latent_state_roots (:obj:`list`): the hidden states of the roots |
|
- reward_hidden_state_roots (:obj:`list`): the value prefix hidden states in LSTM of the roots |
|
- to_play (:obj:`list`): the to_play list used in in self-play-mode board games |
|
""" |
|
with torch.no_grad(): |
|
model.eval() |
|
|
|
|
|
batch_size = roots.num |
|
pb_c_base, pb_c_init, discount_factor = self._cfg.pb_c_base, self._cfg.pb_c_init, self._cfg.discount_factor |
|
|
|
|
|
latent_state_batch_in_search_path = [latent_state_roots] |
|
|
|
reward_hidden_state_c_batch = [reward_hidden_state_roots[0]] |
|
reward_hidden_state_h_batch = [reward_hidden_state_roots[1]] |
|
|
|
|
|
min_max_stats_lst = MinMaxStatsList(batch_size) |
|
|
|
for simulation_index in range(self._cfg.num_simulations): |
|
|
|
|
|
latent_states = [] |
|
hidden_states_c_reward = [] |
|
hidden_states_h_reward = [] |
|
|
|
|
|
results = tree_sez.SearchResults(num=batch_size) |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
MCTS stage 1: Selection |
|
Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l. |
|
""" |
|
latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play = tree_sez.batch_traverse( |
|
roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results, copy.deepcopy(to_play), |
|
self._cfg.model.continuous_action_space |
|
) |
|
|
|
search_lens = results.search_lens |
|
|
|
|
|
for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch): |
|
latent_states.append(latent_state_batch_in_search_path[ix][iy]) |
|
hidden_states_c_reward.append(reward_hidden_state_c_batch[ix][0][iy]) |
|
hidden_states_h_reward.append(reward_hidden_state_h_batch[ix][0][iy]) |
|
|
|
latent_states = torch.from_numpy(np.asarray(latent_states)).to(self._cfg.device).float() |
|
hidden_states_c_reward = torch.from_numpy(np.asarray(hidden_states_c_reward)).to(self._cfg.device |
|
).unsqueeze(0) |
|
hidden_states_h_reward = torch.from_numpy(np.asarray(hidden_states_h_reward)).to(self._cfg.device |
|
).unsqueeze(0) |
|
|
|
if self._cfg.model.continuous_action_space is True: |
|
|
|
last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).float() |
|
|
|
else: |
|
|
|
last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).long() |
|
""" |
|
MCTS stage 2: Expansion |
|
At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function. |
|
Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation) |
|
MCTS stage 3: Backup |
|
At the end of the simulation, the statistics along the trajectory are updated. |
|
""" |
|
network_output = model.recurrent_inference( |
|
latent_states, (hidden_states_c_reward, hidden_states_h_reward), last_actions |
|
) |
|
|
|
[ |
|
network_output.latent_state, network_output.policy_logits, network_output.value, |
|
network_output.value_prefix |
|
] = to_detach_cpu_numpy( |
|
[ |
|
network_output.latent_state, |
|
network_output.policy_logits, |
|
self.inverse_scalar_transform_handle(network_output.value), |
|
self.inverse_scalar_transform_handle(network_output.value_prefix), |
|
] |
|
) |
|
network_output.reward_hidden_state = ( |
|
network_output.reward_hidden_state[0].detach().cpu().numpy(), |
|
network_output.reward_hidden_state[1].detach().cpu().numpy() |
|
) |
|
|
|
latent_state_batch_in_search_path.append(network_output.latent_state) |
|
reward_latent_state_batch = network_output.reward_hidden_state |
|
|
|
value_batch = network_output.value.reshape(-1).tolist() |
|
value_prefix_batch = network_output.value_prefix.reshape(-1).tolist() |
|
policy_logits_batch = network_output.policy_logits.tolist() |
|
|
|
|
|
|
|
assert self._cfg.lstm_horizon_len > 0 |
|
reset_idx = (np.array(search_lens) % self._cfg.lstm_horizon_len == 0) |
|
reward_latent_state_batch[0][:, reset_idx, :] = 0 |
|
reward_latent_state_batch[1][:, reset_idx, :] = 0 |
|
is_reset_list = reset_idx.astype(np.int32).tolist() |
|
reward_hidden_state_c_batch.append(reward_latent_state_batch[0]) |
|
reward_hidden_state_h_batch.append(reward_latent_state_batch[1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
current_latent_state_index = simulation_index + 1 |
|
tree_sez.batch_backpropagate( |
|
current_latent_state_index, discount_factor, value_prefix_batch, value_batch, policy_logits_batch, |
|
min_max_stats_lst, results, is_reset_list, virtual_to_play |
|
) |
|
|