gomoku / LightZero /lzero /model /tests /test_alphazero_model.py
zjowowen's picture
init space
079c32c
raw
history blame
4.55 kB
from itertools import product
import pytest
import torch
from ding.torch_utils import is_differentiable
from lzero.model.alphazero_model import PredictionNetwork
action_space_size = [2, 3]
batch_size = [100, 200]
num_res_blocks = [3]
num_channels = [3]
value_head_channels = [8]
policy_head_channels = [8]
fc_value_layers = [[
16,
]]
fc_policy_layers = [[
16,
]]
output_support_size = [2]
observation_shape = [1, 3, 3]
prediction_network_args = list(
product(
action_space_size,
batch_size,
num_res_blocks,
num_channels,
value_head_channels,
policy_head_channels,
fc_value_layers,
fc_policy_layers,
output_support_size,
)
)
@pytest.mark.unittest
class TestAlphaZeroModel:
def output_check(self, model, outputs):
if isinstance(outputs, torch.Tensor):
loss = outputs.sum()
elif isinstance(outputs, list):
loss = sum([t.sum() for t in outputs])
elif isinstance(outputs, dict):
loss = sum([v.sum() for v in outputs.values()])
is_differentiable(loss, model)
@pytest.mark.parametrize(
'action_space_size, batch_size, num_res_blocks, num_channels, value_head_channels, policy_head_channels, fc_value_layers, fc_policy_layers, output_support_size',
prediction_network_args
)
def test_prediction_network(
self, action_space_size, batch_size, num_res_blocks, num_channels, value_head_channels,
policy_head_channels,
fc_value_layers, fc_policy_layers, output_support_size
):
obs = torch.rand(batch_size, num_channels, 3, 3)
flatten_output_size_for_value_head = value_head_channels * observation_shape[1] * observation_shape[2]
flatten_output_size_for_policy_head = policy_head_channels * observation_shape[1] * observation_shape[2]
# print('='*20)
# print(batch_size, num_res_blocks, num_channels, action_space_size, fc_value_layers, fc_policy_layers, output_support_size)
# print('='*20)
prediction_network = PredictionNetwork(
action_space_size=action_space_size,
continuous_action_space=False,
num_res_blocks=num_res_blocks,
num_channels=num_channels,
value_head_channels=value_head_channels,
policy_head_channels=policy_head_channels,
fc_value_layers=fc_value_layers,
fc_policy_layers=fc_policy_layers,
output_support_size=output_support_size,
flatten_output_size_for_value_head=flatten_output_size_for_value_head,
flatten_output_size_for_policy_head=flatten_output_size_for_policy_head,
last_linear_layer_init_zero=True,
)
policy, value = prediction_network(obs)
assert policy.shape == torch.Size([batch_size, action_space_size])
assert value.shape == torch.Size([batch_size, output_support_size])
if __name__ == "__main__":
action_space_size = 2
batch_size = 100
num_res_blocks = 3
num_channels = 3
reward_head_channels = 2
value_head_channels = 8
policy_head_channels = 8
fc_value_layers = [16]
fc_policy_layers = [16]
output_support_size = 2
observation_shape = [1, 3, 3]
obs = torch.rand(batch_size, num_channels, 3, 3)
flatten_output_size_for_value_head = value_head_channels * observation_shape[1] * observation_shape[2]
flatten_output_size_for_policy_head = policy_head_channels * observation_shape[1] * observation_shape[2]
print('=' * 20)
print(
batch_size, num_res_blocks, num_channels, action_space_size, reward_head_channels, fc_value_layers,
fc_policy_layers, output_support_size
)
print('=' * 20)
prediction_network = PredictionNetwork(
action_space_size=action_space_size,
num_res_blocks=num_res_blocks,
num_channels=num_channels,
value_head_channels=value_head_channels,
policy_head_channels=policy_head_channels,
fc_value_layers=fc_value_layers,
fc_policy_layers=fc_policy_layers,
output_support_size=output_support_size,
flatten_output_size_for_value_head=flatten_output_size_for_value_head,
flatten_output_size_for_policy_head=flatten_output_size_for_policy_head,
last_linear_layer_init_zero=True,
)
policy, value = prediction_network(obs)
assert policy.shape == torch.Size([batch_size, action_space_size])
assert value.shape == torch.Size([batch_size, output_support_size])