|
from easydict import EasyDict |
|
import ding.envs.gym_env |
|
|
|
cfg = dict( |
|
exp_name='Pendulum-v1-DDPG', |
|
seed=0, |
|
env=dict( |
|
env_id='Pendulum-v1', |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
n_evaluator_episode=5, |
|
stop_value=-250, |
|
act_scale=True, |
|
), |
|
policy=dict( |
|
cuda=False, |
|
priority=False, |
|
random_collect_size=800, |
|
model=dict( |
|
obs_shape=3, |
|
action_shape=1, |
|
twin_critic=False, |
|
action_space='regression', |
|
), |
|
learn=dict( |
|
update_per_collect=2, |
|
batch_size=128, |
|
learning_rate_actor=0.001, |
|
learning_rate_critic=0.001, |
|
ignore_done=True, |
|
actor_update_freq=1, |
|
noise=False, |
|
), |
|
collect=dict( |
|
n_sample=48, |
|
noise_sigma=0.1, |
|
collector=dict(collect_print_freq=1000, ), |
|
), |
|
eval=dict(evaluator=dict(eval_freq=100, )), |
|
other=dict(replay_buffer=dict( |
|
replay_buffer_size=20000, |
|
max_use=16, |
|
), ), |
|
), |
|
wandb_logger=dict( |
|
gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False |
|
), |
|
) |
|
|
|
cfg = EasyDict(cfg) |
|
|
|
env = ding.envs.gym_env.env |
|
|