gomoku / DI-engine /ding /data /tests /test_storage_loader.py
zjowowen's picture
init space
079c32c
raw
history blame
6.09 kB
import os
import timeit
import pytest
import tempfile
import shutil
import numpy as np
import torch
import treetensor.torch as ttorch
from ding.data.shm_buffer import ShmBuffer
from ding.data.storage_loader import FileStorageLoader
from time import sleep, time
from os import path
from ding.framework.supervisor import RecvPayload
@pytest.mark.tmp # gitlab ci and local test pass, github always fail
def test_file_storage_loader():
tempdir = path.join(tempfile.gettempdir(), "test_storage_loader")
loader = FileStorageLoader(dirname=tempdir)
try:
total_num = 200
storages = []
for i in range(10):
# 21MB
data = [
{
"s": "abc",
"obs": np.random.rand(4, 84, 84).astype(np.float32),
# "next_obs": np.random.rand(4, 84, 84).astype(np.float32),
# "obs": torch.rand(4, 84, 84, dtype=torch.float32),
"next_obs": torch.rand(4, 84, 84, dtype=torch.float32)
} for _ in range(96)
]
storage = loader.save(data)
storages.append(storage)
start = time()
for i in range(total_num):
storage = storages[i % 10]
data = storage.load()
origin_time_cost = time() - start
print("Load time cost: {:.4f}s".format(origin_time_cost))
call_times = 0
def callback(data):
assert data[0]['obs'] is not None
nonlocal call_times
call_times += 1
# First initialize shared memory is very slow, discard this time cost.
start = time()
loader._first_meet(storage=storages[0], callback=callback)
print("Initialize shared memory time: {:.4f}s".format(time() - start))
start = time()
for i in range(1, total_num):
storage = storages[i % 10]
loader.load(storage, callback)
while True:
if call_times == total_num:
break
sleep(0.01)
new_time_cost = time() - start
print("Loader time cost: {:.4f}s".format(new_time_cost))
assert new_time_cost < origin_time_cost
finally:
if path.exists(tempdir):
shutil.rmtree(tempdir)
loader.shutdown()
@pytest.mark.unittest
def test_file_storage_loader_cleanup():
tempdir = path.join(tempfile.gettempdir(), "test_storage_loader")
loader = FileStorageLoader(dirname=tempdir, ttl=1)
try:
storages = []
for _ in range(4):
data = np.random.rand(4, 84, 84).astype(np.float32)
storage = loader.save(data)
storages.append(storage)
sleep(0.5)
assert len(os.listdir(tempdir)) < 4
finally:
if path.exists(tempdir):
shutil.rmtree(tempdir)
loader.shutdown()
@pytest.mark.unittest
def test_shared_object():
loader = FileStorageLoader(dirname="")
# ========== Test array ==========
obj = [{"obs": np.random.rand(100, 100)} for _ in range(10)]
shm_obj = loader._create_shm_buffer(obj)
assert len(shm_obj.buf) == len(obj) * 2
assert isinstance(shm_obj.buf[0]["obs"], ShmBuffer)
# Callback
payload = RecvPayload(proc_id=0, data=obj)
loader._shm_callback(payload=payload, shm_obj=shm_obj)
assert len(payload.data) == 10
assert [d["obs"] is None for d in payload.data]
# ========== Putback ==========
loader._shm_putback(payload=payload, shm_obj=shm_obj)
obj = payload.data
assert len(obj) == 10
for o in obj:
assert isinstance(o["obs"], np.ndarray)
assert o["obs"].shape == (100, 100)
# ========== Test dict ==========
obj = {"obs": torch.rand(100, 100, dtype=torch.float32)}
shm_obj = loader._create_shm_buffer(obj)
assert isinstance(shm_obj.buf["obs"], ShmBuffer)
payload = RecvPayload(proc_id=0, data=obj)
loader._shm_callback(payload=payload, shm_obj=shm_obj)
assert payload.data["obs"] is None
loader._shm_putback(payload=payload, shm_obj=shm_obj)
assert isinstance(payload.data["obs"], torch.Tensor)
assert payload.data["obs"].shape == (100, 100)
# ========== Test treetensor ==========
obj = {"trajectories": [ttorch.as_tensor({"obs": torch.rand(10, 10, dtype=torch.float32)}) for _ in range(10)]}
shm_obj = loader._create_shm_buffer(obj)
payload = RecvPayload(proc_id=0, data=obj)
loader._shm_callback(payload=payload, shm_obj=shm_obj)
assert len(payload.data["trajectories"]) == 10
for traj in payload.data["trajectories"]:
assert traj["obs"] is None
loader._shm_putback(payload=payload, shm_obj=shm_obj)
for traj in payload.data["trajectories"]:
assert isinstance(traj["obs"], torch.Tensor)
assert traj["obs"].shape == (10, 10)
@pytest.mark.benchmark
def test_shared_object_benchmark():
loader = FileStorageLoader(dirname="")
# ========== Test treetensor ==========
obj = {
"env_step": 0,
"trajectories": [
ttorch.as_tensor(
{
"done": False,
"reward": torch.tensor([1, 0], dtype=torch.int32),
"obs": torch.rand(4, 84, 84, dtype=torch.float32),
"next_obs": torch.rand(4, 84, 84, dtype=torch.float32),
"action": torch.tensor([1], dtype=torch.int32),
"collect_train_iter": torch.tensor([1], dtype=torch.int32),
"env_data_id": torch.tensor([1], dtype=torch.int32),
}
) for _ in range(10)
]
}
buf = loader._create_shm_buffer(obj)
payload = RecvPayload(proc_id=0, data=obj)
loader._shm_callback(payload=payload, shm_obj=buf)
def stmt():
payload.extra = buf.id_.get()
loader._shm_putback(payload=payload, shm_obj=buf)
res = timeit.repeat(stmt, repeat=5, number=1000)
print("Mean: {:.4f}s, STD: {:.4f}s, Mean each call: {:.4f}ms".format(np.mean(res), np.std(res), np.mean(res)))
assert np.mean(res) < 1