|
import gym |
|
from ditk import logging |
|
from ding.model import PPG |
|
from ding.policy import PPGOffPolicy |
|
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 |
|
from ding.data import DequeBuffer |
|
from ding.data.buffer.middleware import use_time_check, sample_range_view |
|
from ding.config import compile_config |
|
from ding.framework import task |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ |
|
CkptSaver, gae_estimator |
|
from ding.utils import set_pkg_seed |
|
from dizoo.classic_control.cartpole.config.cartpole_ppg_offpolicy_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
logging.getLogger().setLevel(logging.INFO) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
collector_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = PPG(**cfg.policy.model) |
|
buffer_cfg = cfg.policy.other.replay_buffer |
|
max_size = max(buffer_cfg.policy.replay_buffer_size, buffer_cfg.value.replay_buffer_size) |
|
buffer_ = DequeBuffer(size=max_size) |
|
policy_buffer = buffer_.view() |
|
policy_buffer.use(use_time_check(policy_buffer, max_use=buffer_cfg.policy.max_use)) |
|
policy_buffer.use(sample_range_view(policy_buffer, start=-buffer_cfg.policy.replay_buffer_size)) |
|
value_buffer = buffer_.view() |
|
value_buffer.use(use_time_check(value_buffer, max_use=buffer_cfg.value.max_use)) |
|
value_buffer.use(sample_range_view(value_buffer, start=-buffer_cfg.value.replay_buffer_size)) |
|
policy = PPGOffPolicy(cfg.policy, model=model) |
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) |
|
task.use(gae_estimator(cfg, policy.collect_mode, buffer_)) |
|
task.use(OffPolicyLearner(cfg, policy.learn_mode, {'policy': policy_buffer, 'value': value_buffer})) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) |
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|