zjowowen's picture
init space
079c32c
raw
history blame
58.4 kB
from typing import Union, Optional, Dict, Callable, List
import torch
import torch.nn as nn
from ding.torch_utils import get_lstm
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, MultiHead, RainbowHead, \
QuantileHead, FQFHead, QRDQNHead, DistributionHead, BranchingHead
from ding.torch_utils.network.gtrxl import GTrXL
@MODEL_REGISTRY.register('dqn')
class DQN(nn.Module):
"""
Overview:
The neural nework structure and computation graph of Deep Q Network (DQN) algorithm, which is the most classic \
value-based RL algorithm for discrete action. The DQN is composed of two parts: ``encoder`` and ``head``. \
The ``encoder`` is used to extract the feature from various observation, and the ``head`` is used to compute \
the Q value of each action dimension.
Interfaces:
``__init__``, ``forward``.
.. note::
Current ``DQN`` supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``, two types of head: \
``DiscreteHead`` and ``DuelingHead``. You can customize your own encoder or head by inheriting this class.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
dueling: bool = True,
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
dropout: Optional[float] = None
) -> None:
"""
Overview:
initialize the DQN (encoder + head) Model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- dueling (:obj:`Optional[bool]`): Whether choose ``DuelingHead`` or ``DiscreteHead (default)``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \
then it will be set to the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- dropout (:obj:`Optional[float]`): The dropout rate of the dropout layer. \
if ``None`` then default disable dropout layer.
"""
super(DQN, self).__init__()
# Squeeze data from tuple, list or dict to single object. For example, from (4, ) to 4
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type, dropout=dropout
)
# Conv Encoder
elif len(obs_shape) == 3:
assert dropout is None, "dropout is not supported in ConvEncoder"
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape)
)
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type,
dropout=dropout
)
else:
self.head = head_cls(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
dropout=dropout
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
DQN forward computation graph, input observation tensor to predict q_value.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output of DQN's forward, including q_value.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
Examples:
>>> model = DQN(32, 6) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 32)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6])
.. note::
For consistency and compatibility, we name all the outputs of the network which are related to action \
selections as ``logit``.
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('bdq')
class BDQ(nn.Module):
def __init__(
self,
obs_shape: Union[int, SequenceType],
num_branches: int = 0,
action_bins_per_branch: int = 2,
layer_num: int = 3,
a_layer_num: Optional[int] = None,
v_layer_num: Optional[int] = None,
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
norm_type: Optional[nn.Module] = None,
activation: Optional[nn.Module] = nn.ReLU(),
) -> None:
"""
Overview:
Init the BDQ (encoder + head) Model according to input arguments. \
referenced paper Action Branching Architectures for Deep Reinforcement Learning \
<https://arxiv.org/pdf/1711.08946>
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- num_branches (:obj:`int`): The number of branches, which is equivalent to the action dimension, \
such as 6 in mujoco's halfcheetah environment.
- action_bins_per_branch (:obj:`int`): The number of actions in each dimension.
- layer_num (:obj:`int`): The number of layers used in the network to compute Advantage and Value output.
- a_layer_num (:obj:`int`): The number of layers used in the network to compute Advantage output.
- v_layer_num (:obj:`int`): The number of layers used in the network to compute Value output.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``
"""
super(BDQ, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, num_branches = squeeze(obs_shape), squeeze(num_branches)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# backbone
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape)
)
self.num_branches = num_branches
self.action_bins_per_branch = action_bins_per_branch
# head
self.head = BranchingHead(
head_hidden_size,
num_branches=self.num_branches,
action_bins_per_branch=self.action_bins_per_branch,
layer_num=layer_num,
a_layer_num=a_layer_num,
v_layer_num=v_layer_num,
activation=activation,
norm_type=norm_type
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
BDQ forward computation graph, input observation tensor to predict q_value.
Arguments:
- x (:obj:`torch.Tensor`): Observation inputs
Returns:
- outputs (:obj:`Dict`): BDQ forward outputs, such as q_value.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is
``num_branches * action_bins_per_branch``
Examples:
>>> model = BDQ(8, 5, 2) # arguments: 'obs_shape', 'num_branches' and 'action_bins_per_branch'.
>>> inputs = torch.randn(4, 8)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 5, 2])
"""
x = self.encoder(x) / (self.num_branches + 1) # corresponds to the "Gradient Rescaling" in the paper
x = self.head(x)
return x
@MODEL_REGISTRY.register('c51dqn')
class C51DQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of C51DQN, which combines distributional RL and DQN. \
You can refer to https://arxiv.org/pdf/1707.06887.pdf for more details. The C51DQN is composed of \
``encoder`` and ``head``. ``encoder`` is used to extract the feature of observation, and ``head`` is \
used to compute the distribution of Q-value.
Interfaces:
``__init__``, ``forward``
.. note::
Current C51DQN supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: int = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
v_min: Optional[float] = -10,
v_max: Optional[float] = 10,
n_atom: Optional[int] = 51,
) -> None:
"""
Overview:
initialize the C51 Model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \
then it will be set to the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- v_min (:obj:`Optional[float]`): The minimum value of the support of the distribution, which is related \
to the value (discounted sum of reward) scale of the specific environment. Defaults to -10.
- v_max (:obj:`Optional[float]`): The maximum value of the support of the distribution, which is related \
to the value (discounted sum of reward) scale of the specific environment. Defaults to 10.
- n_atom (:obj:`Optional[int]`): The number of atoms in the prediction distribution, 51 is the default \
value in the paper, you can also try other values such as 301.
"""
super(C51DQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own C51DQN".format(obs_shape)
)
# Head Type
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
DistributionHead,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
else:
self.head = DistributionHead(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
C51DQN forward computation graph, input observation tensor to predict q_value and its distribution.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output of DQN's forward, including q_value, and distribution.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension.
- distribution (:obj:`torch.Tensor`): Q-Value discretized distribution, i.e., probability of each \
uniformly spaced atom Q-value, such as dividing [-10, 10] into 51 uniform spaces.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where M is action_shape.
- distribution(:obj:`torch.Tensor`): :math:`(B, M, P)`, where P is n_atom.
Examples:
>>> model = C51DQN(128, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 128)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> # default head_hidden_size: int = 64,
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default n_atom: int = 51
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51])
.. note::
For consistency and compatibility, we name all the outputs of the network which are related to action \
selections as ``logit``.
.. note::
For convenience, we recommend that the number of atoms should be odd, so that the middle atom is exactly \
the value of the Q-value.
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('qrdqn')
class QRDQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of QRDQN, which combines distributional RL and DQN. \
You can refer to Distributional Reinforcement Learning with Quantile Regression \
https://arxiv.org/pdf/1710.10044.pdf for more details.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
num_quantiles: int = 32,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the QRDQN Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
- action_shape (:obj:`Union[int, SequenceType]`): Action's space.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details`
"""
super(QRDQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own QRDQN".format(obs_shape)
)
# Head Type
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
QRDQNHead,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
num_quantiles=num_quantiles,
activation=activation,
norm_type=norm_type,
)
else:
self.head = QRDQNHead(
head_hidden_size,
action_shape,
head_layer_num,
num_quantiles=num_quantiles,
activation=activation,
norm_type=norm_type,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use observation tensor to predict QRDQN's output.
Parameter updates with QRDQN's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`):
Run with encoder and head. Return the result prediction dictionary.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``.
- q (:obj:`torch.Tensor`): Q valye tensor tensor of size ``(B, N, num_quantiles)``
- tau (:obj:`torch.Tensor`): tau tensor of size ``(B, N, 1)``
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape.
- tau (:obj:`torch.Tensor`): :math:`(B, M, 1)`
Examples:
>>> model = QRDQN(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles : int = 32
>>> assert outputs['q'].shape == torch.Size([4, 64, 32])
>>> assert outputs['tau'].shape == torch.Size([4, 32, 1])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('iqn')
class IQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of IQN, which combines distributional RL and DQN. \
You can refer to paper Implicit Quantile Networks for Distributional Reinforcement Learning \
https://arxiv.org/pdf/1806.06923.pdf for more details.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
num_quantiles: int = 32,
quantile_embedding_size: int = 128,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None
) -> None:
"""
Overview:
Initialize the IQN Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape.
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details.
"""
super(IQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own IQN".format(obs_shape)
)
# Head Type
head_cls = QuantileHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to predict IQN's output.
Parameter updates with IQN's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`):
Run with encoder and head. Return the result prediction dictionary.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``.
- q (:obj:`torch.Tensor`): Q valye tensor tensor of size ``(num_quantiles, N, B)``
- quantiles (:obj:`torch.Tensor`): quantiles tensor of size ``(quantile_embedding_size, 1)``
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape
- quantiles (:obj:`torch.Tensor`): :math:`(P, 1)`, where P is quantile_embedding_size.
Examples:
>>> model = IQN(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles: int = 32
>>> assert outputs['q'].shape == torch.Size([32, 4, 64]
>>> # default quantile_embedding_size: int = 128
>>> assert outputs['quantiles'].shape == torch.Size([128, 1])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('fqf')
class FQF(nn.Module):
"""
Overview:
The neural network structure and computation graph of FQF, which combines distributional RL and DQN. \
You can refer to paper Fully Parameterized Quantile Function for Distributional Reinforcement Learning \
https://arxiv.org/pdf/1911.02140.pdf for more details.
Interface:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
num_quantiles: int = 32,
quantile_embedding_size: int = 128,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None
) -> None:
"""
Overview:
Initialize the FQF Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape.
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details.
"""
super(FQF, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own FQF".format(obs_shape)
)
# Head Type
head_cls = FQFHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to predict FQF's output.
Parameter updates with FQF's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \
``q`` (:obj:`torch.Tensor`), ``quantiles`` (:obj:`torch.Tensor`), \
``quantiles_hats`` (:obj:`torch.Tensor`), \
``q_tau_i`` (:obj:`torch.Tensor`), ``entropies`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit: :math:`(B, M)`, where M is action_shape.
- q: :math:`(B, num_quantiles, M)`.
- quantiles: :math:`(B, num_quantiles + 1)`.
- quantiles_hats: :math:`(B, num_quantiles)`.
- q_tau_i: :math:`(B, num_quantiles - 1, M)`.
- entropies: :math:`(B, 1)`.
Examples:
>>> model = FQF(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles: int = 32
>>> assert outputs['q'].shape == torch.Size([4, 32, 64])
>>> assert outputs['quantiles'].shape == torch.Size([4, 33])
>>> assert outputs['quantiles_hats'].shape == torch.Size([4, 32])
>>> assert outputs['q_tau_i'].shape == torch.Size([4, 31, 64])
>>> assert outputs['quantiles'].shape == torch.Size([4, 1])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('rainbowdqn')
class RainbowDQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of RainbowDQN, which combines distributional RL and DQN. \
You can refer to paper Rainbow: Combining Improvements in Deep Reinforcement Learning \
https://arxiv.org/pdf/1710.02298.pdf for more details.
Interfaces:
``__init__``, ``forward``
.. note::
RainbowDQN contains dueling architecture by default.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
v_min: Optional[float] = -10,
v_max: Optional[float] = 10,
n_atom: Optional[int] = 51,
) -> None:
"""
Overview:
Init the Rainbow Model according to arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape.
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \
for more details`
- n_atom (:obj:`Optional[int]`): Number of atoms in the prediction distribution.
"""
super(RainbowDQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own RainbowDQN".
format(obs_shape)
)
# Head Type
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
RainbowHead,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
else:
self.head = RainbowHead(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use observation tensor to predict Rainbow output.
Parameter updates with Rainbow's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`):
Run ``MLP`` with ``RainbowHead`` setups and return the result prediction dictionary.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``.
- distribution (:obj:`torch.Tensor`): Distribution tensor of size ``(B, N, n_atom)``
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape.
- distribution(:obj:`torch.FloatTensor`): :math:`(B, M, P)`, where P is n_atom.
Examples:
>>> model = RainbowDQN(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default n_atom: int =51
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51])
"""
x = self.encoder(x)
x = self.head(x)
return x
def parallel_wrapper(forward_fn: Callable) -> Callable:
"""
Overview:
Process timestep T and batch_size B at the same time, in other words, treat different timestep data as
different trajectories in a batch.
Arguments:
- forward_fn (:obj:`Callable`): Normal ``nn.Module`` 's forward function.
Returns:
- wrapper (:obj:`Callable`): Wrapped function.
"""
def wrapper(x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
T, B = x.shape[:2]
def reshape(d):
if isinstance(d, list):
d = [reshape(t) for t in d]
elif isinstance(d, dict):
d = {k: reshape(v) for k, v in d.items()}
else:
d = d.reshape(T, B, *d.shape[1:])
return d
# NOTE(rjy): the initial input shape will be (T, B, N),
# means encoder or head should process B trajectorys, each trajectory has T timestep,
# but T and B dimension can be both treated as batch_size in encoder and head,
# i.e., independent and parallel processing,
# so here we need such fn to reshape for encoder or head
x = x.reshape(T * B, *x.shape[2:])
x = forward_fn(x)
x = reshape(x)
return x
return wrapper
@MODEL_REGISTRY.register('drqn')
class DRQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of DRQN (DQN + RNN = DRQN) algorithm, which is the most \
common DQN variant for sequential data and paratially observable environment. The DRQN is composed of three \
parts: ``encoder``, ``head`` and ``rnn``. The ``encoder`` is used to extract the feature from various \
observation, the ``rnn`` is used to process the sequential observation and other data, and the ``head`` is \
used to compute the Q value of each action dimension.
Interfaces:
``__init__``, ``forward``.
.. note::
Current ``DRQN`` supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``, two types of head: \
``DiscreteHead`` and ``DuelingHead``, three types of rnn: ``normal (LSTM with LayerNorm)``, ``pytorch`` and \
``gru``. You can customize your own encoder, rnn or head by inheriting this class.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
dueling: bool = True,
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
lstm_type: Optional[str] = 'normal',
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
res_link: bool = False
) -> None:
"""
Overview:
Initialize the DRQN Model according to the corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- dueling (:obj:`Optional[bool]`): Whether choose ``DuelingHead`` or ``DiscreteHead (default)``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \
then it will be set to the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
- lstm_type (:obj:`Optional[str]`): The type of RNN module, now support ['normal', 'pytorch', 'gru'].
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- res_link (:obj:`bool`): Whether to enable the residual link, which is the skip connnection between \
single frame data and the sequential data, defaults to False.
"""
super(DRQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own DRQN".format(obs_shape)
)
# LSTM Type
self.rnn = get_lstm(lstm_type, input_size=head_hidden_size, hidden_size=head_hidden_size)
self.res_link = res_link
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type
)
def forward(self, inputs: Dict, inference: bool = False, saved_state_timesteps: Optional[list] = None) -> Dict:
"""
Overview:
DRQN forward computation graph, input observation tensor to predict q_value.
Arguments:
- inputs (:obj:`torch.Tensor`): The dict of input data, including observation and previous rnn state.
- inference: (:obj:'bool'): Whether to enable inference forward mode, if True, we unroll the one timestep \
transition, otherwise, we unroll the eentire sequence transitions.
- saved_state_timesteps: (:obj:'Optional[list]'): When inference is False, we unroll the sequence \
transitions, then we would use this list to indicate how to save and return hidden state.
ArgumentsKeys:
- obs (:obj:`torch.Tensor`): The raw observation tensor.
- prev_state (:obj:`list`): The previous rnn state tensor, whose structure depends on ``lstm_type``.
Returns:
- outputs (:obj:`Dict`): The output of DRQN's forward, including logit (q_value) and next state.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension.
- next_state (:obj:`list`): The next rnn state tensor, whose structure depends on ``lstm_type``.
Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
Examples:
>>> # Init input's Keys:
>>> prev_state = [[torch.randn(1, 1, 64) for __ in range(2)] for _ in range(4)] # B=4
>>> obs = torch.randn(4,64)
>>> model = DRQN(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True)
>>> # Check outputs's Keys
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == (4, 64)
>>> assert len(outputs['next_state']) == 4
>>> assert all([len(t) == 2 for t in outputs['next_state']])
>>> assert all([t[0].shape == (1, 1, 64) for t in outputs['next_state']])
"""
x, prev_state = inputs['obs'], inputs['prev_state']
# for both inference and other cases, the network structure is encoder -> rnn network -> head
# the difference is inference take the data with seq_len=1 (or T = 1)
# NOTE(rjy): in most situations, set inference=True when evaluate and inference=False when training
if inference:
x = self.encoder(x)
if self.res_link:
a = x
x = x.unsqueeze(0) # for rnn input, put the seq_len of x as 1 instead of none.
# prev_state: DataType: List[Tuple[torch.Tensor]]; Initially, it is a list of None
x, next_state = self.rnn(x, prev_state)
x = x.squeeze(0) # to delete the seq_len dim to match head network input
if self.res_link:
x = x + a
x = self.head(x)
x['next_state'] = next_state
return x
else:
# In order to better explain why rnn needs saved_state and which states need to be stored,
# let's take r2d2 as an example
# in r2d2,
# 1) data['burnin_nstep_obs'] = data['obs'][:bs + self._nstep]
# 2) data['main_obs'] = data['obs'][bs:-self._nstep]
# 3) data['target_obs'] = data['obs'][bs + self._nstep:]
# NOTE(rjy): (T, B, N) or (T, B, C, H, W)
assert len(x.shape) in [3, 5], x.shape
x = parallel_wrapper(self.encoder)(x) # (T, B, N)
if self.res_link:
a = x
# NOTE(rjy) lstm_embedding stores all hidden_state
lstm_embedding = []
# TODO(nyz) how to deal with hidden_size key-value
hidden_state_list = []
if saved_state_timesteps is not None:
saved_state = []
for t in range(x.shape[0]): # T timesteps
# NOTE(rjy) use x[t:t+1] but not x[t] can keep original dimension
output, prev_state = self.rnn(x[t:t + 1], prev_state) # output: (1,B, head_hidden_size)
if saved_state_timesteps is not None and t + 1 in saved_state_timesteps:
saved_state.append(prev_state)
lstm_embedding.append(output)
hidden_state = [p['h'] for p in prev_state]
# only keep ht, {list: x.shape[0]{Tensor:(1, batch_size, head_hidden_size)}}
hidden_state_list.append(torch.cat(hidden_state, dim=1))
x = torch.cat(lstm_embedding, 0) # (T, B, head_hidden_size)
if self.res_link:
x = x + a
x = parallel_wrapper(self.head)(x) # (T, B, action_shape)
# NOTE(rjy): x['next_state'] is the hidden state of the last timestep inputted to lstm
# the last timestep state including the hidden state (h) and the cell state (c)
# shape: {list: B{dict: 2{Tensor:(1, 1, head_hidden_size}}}
x['next_state'] = prev_state
# all hidden state h, this returns a tensor of the dim: seq_len*batch_size*head_hidden_size
# This key is used in qtran, the algorithm requires to retain all h_{t} during training
x['hidden_state'] = torch.cat(hidden_state_list, dim=0)
if saved_state_timesteps is not None:
# the selected saved hidden states, including the hidden state (h) and the cell state (c)
# in r2d2, set 'saved_hidden_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]',
# then saved_state will record the hidden_state for main_obs and target_obs to
# initialize their lstm (h c)
x['saved_state'] = saved_state
return x
@MODEL_REGISTRY.register('gtrxldqn')
class GTrXLDQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of Gated Transformer-XL DQN algorithm, which is the \
enhanced version of DRQN, using Transformer-XL to improve long-term sequential modelling ability. The \
GTrXL-DQN is composed of three parts: ``encoder``, ``head`` and ``core``. The ``encoder`` is used to extract \
the feature from various observation, the ``core`` is used to process the sequential observation and other \
data, and the ``head`` is used to compute the Q value of each action dimension.
Interfaces:
``__init__``, ``forward``, ``reset_memory``, ``get_memory`` .
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
head_layer_num: int = 1,
att_head_dim: int = 16,
hidden_size: int = 16,
att_head_num: int = 2,
att_mlp_num: int = 2,
att_layer_num: int = 3,
memory_len: int = 64,
activation: Optional[nn.Module] = nn.ReLU(),
head_norm_type: Optional[str] = None,
dropout: float = 0.,
gru_gating: bool = True,
gru_bias: float = 2.,
dueling: bool = True,
encoder_hidden_size_list: SequenceType = [128, 128, 256],
encoder_norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the GTrXLDQN model accoding to corresponding input arguments.
.. tip::
You can refer to GTrXl class in ``ding.torch_utils.network.gtrxl`` for more details about the input \
arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Used by Transformer. Observation's space.
- action_shape (:obj:Union[int, SequenceType]): Used by Head. Action's space.
- head_layer_num (:obj:`int`): Used by Head. Number of layers.
- att_head_dim (:obj:`int`): Used by Transformer.
- hidden_size (:obj:`int`): Used by Transformer and Head.
- att_head_num (:obj:`int`): Used by Transformer.
- att_mlp_num (:obj:`int`): Used by Transformer.
- att_layer_num (:obj:`int`): Used by Transformer.
- memory_len (:obj:`int`): Used by Transformer.
- activation (:obj:`Optional[nn.Module]`): Used by Transformer and Head. if ``None`` then default set to \
``nn.ReLU()``.
- head_norm_type (:obj:`Optional[str]`): Used by Head. The type of normalization to use, see \
``ding.torch_utils.fc_block`` for more details`.
- dropout (:obj:`bool`): Used by Transformer.
- gru_gating (:obj:`bool`): Used by Transformer.
- gru_bias (:obj:`float`): Used by Transformer.
- dueling (:obj:`bool`): Used by Head. Make the head dueling.
- encoder_hidden_size_list(:obj:`SequenceType`): Used by Encoder. The collection of ``hidden_size`` if \
using a custom convolutional encoder.
- encoder_norm_type (:obj:`Optional[str]`): Used by Encoder. The type of normalization to use, see \
``ding.torch_utils.fc_block`` for more details`.
"""
super(GTrXLDQN, self).__init__()
self.core = GTrXL(
input_dim=obs_shape,
head_dim=att_head_dim,
embedding_dim=hidden_size,
head_num=att_head_num,
mlp_num=att_mlp_num,
layer_num=att_layer_num,
memory_len=memory_len,
activation=activation,
dropout_ratio=dropout,
gru_gating=gru_gating,
gru_bias=gru_bias,
)
if isinstance(obs_shape, int) or len(obs_shape) == 1:
raise NotImplementedError("not support obs_shape for pre-defined encoder: {}".format(obs_shape))
# replace the embedding layer of Transformer with Conv Encoder
elif len(obs_shape) == 3:
assert encoder_hidden_size_list[-1] == hidden_size
self.obs_encoder = ConvEncoder(
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=encoder_norm_type
)
self.dropout = nn.Dropout(dropout)
self.core.use_embedding_layer = False
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own GTrXL".format(obs_shape)
)
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=head_norm_type
)
else:
self.head = head_cls(
hidden_size, action_shape, head_layer_num, activation=activation, norm_type=head_norm_type
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Let input tensor go through GTrXl and the Head sequentially.
Arguments:
- x (:obj:`torch.Tensor`): input tensor of shape (seq_len, bs, obs_shape).
Returns:
- out (:obj:`Dict`): run ``GTrXL`` with ``DiscreteHead`` setups and return the result prediction dictionary.
ReturnKeys:
- logit (:obj:`torch.Tensor`): discrete Q-value output of each action dimension, shape is (B, action_space).
- memory (:obj:`torch.Tensor`): memory tensor of size ``(bs x layer_num+1 x memory_len x embedding_dim)``.
- transformer_out (:obj:`torch.Tensor`): output tensor of transformer with same size as input ``x``.
Examples:
>>> # Init input's Keys:
>>> obs_dim, seq_len, bs, action_dim = 128, 64, 32, 4
>>> obs = torch.rand(seq_len, bs, obs_dim)
>>> model = GTrXLDQN(obs_dim, action_dim)
>>> outputs = model(obs)
>>> assert isinstance(outputs, dict)
"""
if len(x.shape) == 5:
# 3d obs: cur_seq, bs, ch, h, w
x_ = x.reshape([x.shape[0] * x.shape[1]] + list(x.shape[-3:]))
x_ = self.dropout(self.obs_encoder(x_))
x = x_.reshape(x.shape[0], x.shape[1], -1)
o1 = self.core(x)
out = self.head(o1['logit'])
# layer_num+1 x memory_len x bs embedding_dim -> bs x layer_num+1 x memory_len x embedding_dim
out['memory'] = o1['memory'].permute((2, 0, 1, 3)).contiguous()
out['transformer_out'] = o1['logit'] # output of gtrxl, out['logit'] is final output
return out
def reset_memory(self, batch_size: Optional[int] = None, state: Optional[torch.Tensor] = None) -> None:
"""
Overview:
Clear or reset the memory of GTrXL.
Arguments:
- batch_size (:obj:`Optional[int]`): The number of samples in a training batch.
- state (:obj:`Optional[torch.Tensor]`): The input memory data, whose shape is \
(layer_num, memory_len, bs, embedding_dim).
"""
self.core.reset_memory(batch_size, state)
def get_memory(self) -> Optional[torch.Tensor]:
"""
Overview:
Return the memory of GTrXL.
Returns:
- memory: (:obj:`Optional[torch.Tensor]`): output memory or None if memory has not been initialized, \
whose shape is (layer_num, memory_len, bs, embedding_dim).
"""
return self.core.get_memory()