zjowowen's picture
init space
079c32c
raw
history blame
No virus
20.5 kB
from typing import Union, Dict, Optional
from easydict import EasyDict
import torch
import torch.nn as nn
from copy import deepcopy
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, MultiHead, \
FCEncoder, ConvEncoder, IMPALAConvEncoder
from ding.torch_utils.network.dreamer import ActionHead, DenseHead
@MODEL_REGISTRY.register('vac')
class VAC(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to (state) Value Actor-Critic (VAC), such as \
A2C/PPO/IMPALA. This model now supports discrete, continuous and hybrid action space. The VAC is composed of \
four parts: ``actor_encoder``, ``critic_encoder``, ``actor_head`` and ``critic_head``. Encoders are used to \
extract the feature from various observation. Heads are used to predict corresponding value or action logit. \
In high-dimensional observation space like 2D image, we often use a shared encoder for both ``actor_encoder`` \
and ``critic_encoder``. In low-dimensional observation space like 1D vector, we often use different encoders.
Interfaces:
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic``.
"""
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType, EasyDict],
action_space: str = 'discrete',
share_encoder: bool = True,
encoder_hidden_size_list: SequenceType = [128, 128, 64],
actor_head_hidden_size: int = 64,
actor_head_layer_num: int = 1,
critic_head_hidden_size: int = 64,
critic_head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
sigma_type: Optional[str] = 'independent',
fixed_sigma_value: Optional[int] = 0.3,
bound_type: Optional[str] = None,
encoder: Optional[torch.nn.Module] = None,
impala_cnn_encoder: bool = False,
) -> None:
"""
Overview:
Initialize the VAC model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- action_space (:obj:`str`): The type of different action spaces, including ['discrete', 'continuous', \
'hybrid'], then will instantiate corresponding head, including ``DiscreteHead``, \
``ReparameterizationHead``, and hybrid heads.
- share_encoder (:obj:`bool`): Whether to share observation encoders between actor and decoder.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``actor_head`` network, defaults \
to 64, it must match the last element of ``encoder_hidden_size_list``.
- actor_head_layer_num (:obj:`int`): The num of layers used in the ``actor_head`` network to compute action.
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``critic_head`` network, defaults \
to 64, it must match the last element of ``encoder_hidden_size_list``.
- critic_head_layer_num (:obj:`int`): The num of layers used in the ``critic_head`` network.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- sigma_type (:obj:`Optional[str]`): The type of sigma in continuous action space, see \
``ding.torch_utils.network.dreamer.ReparameterizationHead`` for more details, in A2C/PPO, it defaults \
to ``independent``, which means state-independent sigma parameters.
- fixed_sigma_value (:obj:`Optional[int]`): If ``sigma_type`` is ``fixed``, then use this value as sigma.
- bound_type (:obj:`Optional[str]`): The type of action bound methods in continuous action space, defaults \
to ``None``, which means no bound.
- encoder (:obj:`Optional[torch.nn.Module]`): The encoder module, defaults to ``None``, you can define \
your own encoder module and pass it into VAC to deal with different observation space.
- impala_cnn_encoder (:obj:`bool`): Whether to use IMPALA CNN encoder, defaults to ``False``.
"""
super(VAC, self).__init__()
obs_shape: int = squeeze(obs_shape)
action_shape = squeeze(action_shape)
self.obs_shape, self.action_shape = obs_shape, action_shape
self.impala_cnn_encoder = impala_cnn_encoder
self.share_encoder = share_encoder
# Encoder Type
def new_encoder(outsize, activation):
if impala_cnn_encoder:
return IMPALAConvEncoder(obs_shape=obs_shape, channels=encoder_hidden_size_list, outsize=outsize)
else:
if isinstance(obs_shape, int) or len(obs_shape) == 1:
return FCEncoder(
obs_shape=obs_shape,
hidden_size_list=encoder_hidden_size_list,
activation=activation,
norm_type=norm_type
)
elif len(obs_shape) == 3:
return ConvEncoder(
obs_shape=obs_shape,
hidden_size_list=encoder_hidden_size_list,
activation=activation,
norm_type=norm_type
)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own encoder".
format(obs_shape)
)
if self.share_encoder:
assert actor_head_hidden_size == critic_head_hidden_size, \
"actor and critic network head should have same size."
if encoder:
if isinstance(encoder, torch.nn.Module):
self.encoder = encoder
else:
raise ValueError("illegal encoder instance.")
else:
self.encoder = new_encoder(actor_head_hidden_size, activation)
else:
if encoder:
if isinstance(encoder, torch.nn.Module):
self.actor_encoder = encoder
self.critic_encoder = deepcopy(encoder)
else:
raise ValueError("illegal encoder instance.")
else:
self.actor_encoder = new_encoder(actor_head_hidden_size, activation)
self.critic_encoder = new_encoder(critic_head_hidden_size, activation)
# Head Type
self.critic_head = RegressionHead(
critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type
)
self.action_space = action_space
assert self.action_space in ['discrete', 'continuous', 'hybrid'], self.action_space
if self.action_space == 'continuous':
self.multi_head = False
self.actor_head = ReparameterizationHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
sigma_type=sigma_type,
activation=activation,
norm_type=norm_type,
bound_type=bound_type
)
elif self.action_space == 'discrete':
actor_head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
self.multi_head = multi_head
if multi_head:
self.actor_head = MultiHead(
actor_head_cls,
actor_head_hidden_size,
action_shape,
layer_num=actor_head_layer_num,
activation=activation,
norm_type=norm_type
)
else:
self.actor_head = actor_head_cls(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
activation=activation,
norm_type=norm_type
)
elif self.action_space == 'hybrid': # HPPO
# hybrid action space: action_type(discrete) + action_args(continuous),
# such as {'action_type_shape': torch.LongTensor([0]), 'action_args_shape': torch.FloatTensor([0.1, -0.27])}
action_shape.action_args_shape = squeeze(action_shape.action_args_shape)
action_shape.action_type_shape = squeeze(action_shape.action_type_shape)
actor_action_args = ReparameterizationHead(
actor_head_hidden_size,
action_shape.action_args_shape,
actor_head_layer_num,
sigma_type=sigma_type,
fixed_sigma_value=fixed_sigma_value,
activation=activation,
norm_type=norm_type,
bound_type=bound_type,
)
actor_action_type = DiscreteHead(
actor_head_hidden_size,
action_shape.action_type_shape,
actor_head_layer_num,
activation=activation,
norm_type=norm_type,
)
self.actor_head = nn.ModuleList([actor_action_type, actor_action_args])
if self.share_encoder:
self.actor = [self.encoder, self.actor_head]
self.critic = [self.encoder, self.critic_head]
else:
self.actor = [self.actor_encoder, self.actor_head]
self.critic = [self.critic_encoder, self.critic_head]
# Convenient for calling some apis (e.g. self.critic.parameters()),
# but may cause misunderstanding when `print(self)`
self.actor = nn.ModuleList(self.actor)
self.critic = nn.ModuleList(self.critic)
def forward(self, x: torch.Tensor, mode: str) -> Dict:
"""
Overview:
VAC forward computation graph, input observation tensor to predict state value or action logit. Different \
``mode`` will forward with different network modules to get different outputs and save computation.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph, whose key-values vary from \
different ``mode``.
Examples (Actor):
>>> model = VAC(64, 128)
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['logit'].shape == torch.Size([4, 128])
Examples (Critic):
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> critic_outputs = model(inputs,'compute_critic')
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64])
Examples (Actor-Critic):
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs,'compute_actor_critic')
>>> assert critic_outputs['value'].shape == torch.Size([4])
>>> assert outputs['logit'].shape == torch.Size([4, 64])
"""
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
return getattr(self, mode)(x)
def compute_actor(self, x: torch.Tensor) -> Dict:
"""
Overview:
VAC forward computation graph for actor part, input observation tensor to predict action logit.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for actor, including ``logit``.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \
the same dimension real-value ranged tensor of possible action choices, and for continuous action \
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \
same as the number of continuous actions. Hybrid action space is a kind of combination of discrete \
and continuous action space, so the logit will be a dict with ``action_type`` and ``action_args``.
Shapes:
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
Examples:
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64])
"""
if self.share_encoder:
x = self.encoder(x)
else:
x = self.actor_encoder(x)
if self.action_space == 'discrete':
return self.actor_head(x)
elif self.action_space == 'continuous':
x = self.actor_head(x) # mu, sigma
return {'logit': x}
elif self.action_space == 'hybrid':
action_type = self.actor_head[0](x)
action_args = self.actor_head[1](x)
return {'logit': {'action_type': action_type['logit'], 'action_args': action_args}}
def compute_critic(self, x: torch.Tensor) -> Dict:
"""
Overview:
VAC forward computation graph for critic part, input observation tensor to predict state value.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for critic, including ``value``.
ReturnsKeys:
- value (:obj:`torch.Tensor`): The predicted state value tensor.
Shapes:
- value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size, (B, 1) is squeezed to (B, ).
Examples:
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> critic_outputs = model(inputs,'compute_critic')
>>> assert critic_outputs['value'].shape == torch.Size([4])
"""
if self.share_encoder:
x = self.encoder(x)
else:
x = self.critic_encoder(x)
x = self.critic_head(x)
return {'value': x['pred']}
def compute_actor_critic(self, x: torch.Tensor) -> Dict:
"""
Overview:
VAC forward computation graph for both actor and critic part, input observation tensor to predict action \
logit and state value.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for both actor and critic, \
including ``logit`` and ``value``.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \
the same dimension real-value ranged tensor of possible action choices, and for continuous action \
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \
same as the number of continuous actions. Hybrid action space is a kind of combination of discrete \
and continuous action space, so the logit will be a dict with ``action_type`` and ``action_args``.
- value (:obj:`torch.Tensor`): The predicted state value tensor.
Shapes:
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
- value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size, (B, 1) is squeezed to (B, ).
Examples:
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs,'compute_actor_critic')
>>> assert critic_outputs['value'].shape == torch.Size([4])
>>> assert outputs['logit'].shape == torch.Size([4, 64])
.. note::
``compute_actor_critic`` interface aims to save computation when shares encoder and return the combination \
dict output.
"""
if self.share_encoder:
actor_embedding = critic_embedding = self.encoder(x)
else:
actor_embedding = self.actor_encoder(x)
critic_embedding = self.critic_encoder(x)
value = self.critic_head(critic_embedding)['pred']
if self.action_space == 'discrete':
logit = self.actor_head(actor_embedding)['logit']
return {'logit': logit, 'value': value}
elif self.action_space == 'continuous':
x = self.actor_head(actor_embedding)
return {'logit': x, 'value': value}
elif self.action_space == 'hybrid':
action_type = self.actor_head[0](actor_embedding)
action_args = self.actor_head[1](actor_embedding)
return {'logit': {'action_type': action_type['logit'], 'action_args': action_args}, 'value': value}
@MODEL_REGISTRY.register('dreamervac')
class DREAMERVAC(nn.Module):
"""
Overview:
The neural network and computation graph of DreamerV3 (state) Value Actor-Critic (VAC).
This model now supports discrete, continuous action space.
Interfaces:
``__init__``, ``forward``.
"""
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType, EasyDict],
dyn_stoch=32,
dyn_deter=512,
dyn_discrete=32,
actor_layers=2,
value_layers=2,
units=512,
act='SiLU',
norm='LayerNorm',
actor_dist='normal',
actor_init_std=1.0,
actor_min_std=0.1,
actor_max_std=1.0,
actor_temp=0.1,
action_unimix_ratio=0.01,
) -> None:
"""
Overview:
Initialize the ``DREAMERVAC`` model according to arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
"""
super(DREAMERVAC, self).__init__()
obs_shape: int = squeeze(obs_shape)
action_shape = squeeze(action_shape)
self.obs_shape, self.action_shape = obs_shape, action_shape
if dyn_discrete:
feat_size = dyn_stoch * dyn_discrete + dyn_deter
else:
feat_size = dyn_stoch + dyn_deter
self.actor = ActionHead(
feat_size, # pytorch version
action_shape,
actor_layers,
units,
act,
norm,
actor_dist,
actor_init_std,
actor_min_std,
actor_max_std,
actor_temp,
outscale=1.0,
unimix_ratio=action_unimix_ratio,
)
self.critic = DenseHead(
feat_size, # pytorch version
(255, ),
value_layers,
units,
'SiLU', # act
'LN', # norm
'twohot_symlog',
outscale=0.0,
device='cuda' if torch.cuda.is_available() else 'cpu',
)