|
from typing import List, Dict, Any, Tuple, Union, Optional |
|
from collections import namedtuple |
|
import torch |
|
import copy |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import coma_data, coma_error, get_train_sample |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate, timestep_collate |
|
from .base_policy import Policy |
|
|
|
|
|
@POLICY_REGISTRY.register('coma') |
|
class COMAPolicy(Policy): |
|
r""" |
|
Overview: |
|
Policy class of COMA algorithm. COMA is a multi model reinforcement learning algorithm |
|
Interface: |
|
_init_learn, _data_preprocess_learn, _forward_learn, _reset_learn, _state_dict_learn, _load_state_dict_learn\ |
|
_init_collect, _forward_collect, _reset_collect, _process_transition, _init_eval, _forward_eval\ |
|
_reset_eval, _get_train_sample, default_model, _monitor_vars_learn |
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str coma | RL policy register name, refer to | this arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool True | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4. ``priority`` bool False | Whether use priority(PER) | priority sample, |
|
| update priority |
|
5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight |
|
| ``IS_weight`` | Weight to correct biased update. |
|
6 | ``learn.update`` int 1 | How many updates(iterations) to train | this args can be vary |
|
| ``_per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
7 | ``learn.target_`` float 0.001 | Target network update momentum | between[0,1] |
|
| ``update_theta`` | parameter. |
|
8 | ``learn.discount`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse |
|
| ``_factor`` | gamma | reward env |
|
9 | ``learn.td_`` float 0.8 | The trade-off factor of td-lambda, |
|
| ``lambda`` | which balances 1step td and mc |
|
10 | ``learn.value_`` float 1.0 | The loss weight of value network | policy network weight |
|
| ``weight`` | is set to 1 |
|
11 | ``learn.entropy_`` float 0.01 | The loss weight of entropy | policy network weight |
|
| ``weight`` | regularization | is set to 1 |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
config = dict( |
|
|
|
type='coma', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
learn=dict( |
|
update_per_collect=20, |
|
batch_size=32, |
|
learning_rate=0.0005, |
|
|
|
|
|
|
|
|
|
target_update_theta=0.001, |
|
|
|
discount_factor=0.99, |
|
|
|
td_lambda=0.8, |
|
|
|
policy_weight=0.001, |
|
|
|
value_weight=1, |
|
|
|
entropy_weight=0.01, |
|
), |
|
collect=dict( |
|
|
|
|
|
|
|
unroll_len=20, |
|
), |
|
eval=dict(), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default model setting for demonstration. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names |
|
|
|
.. note:: |
|
The user can define and use customized network model but must obey the same inferface definition indicated \ |
|
by import_names path. For coma, ``ding.model.coma.coma`` |
|
""" |
|
return 'coma', ['ding.model.template.coma'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Init the learner model of COMAPolicy |
|
|
|
Arguments: |
|
.. note:: |
|
|
|
The _init_learn method takes the argument from the self._cfg.learn in the config file |
|
|
|
- learning_rate (:obj:`float`): The learning rate fo the optimizer |
|
- gamma (:obj:`float`): The discount factor |
|
- lambda (:obj:`float`): The lambda factor, determining the mix of bootstrapping\ |
|
vs further accumulation of multistep returns at each timestep, |
|
- value_wight(:obj:`float`): The weight of value loss in total loss |
|
- entropy_weight(:obj:`float`): The weight of entropy loss in total loss |
|
- agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num. |
|
- batch_size (:obj:`int`): Need batch size info to init hidden_state plugins |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
assert not self._priority, "not implemented priority in COMA" |
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._gamma = self._cfg.learn.discount_factor |
|
self._lambda = self._cfg.learn.td_lambda |
|
self._policy_weight = self._cfg.learn.policy_weight |
|
self._value_weight = self._cfg.learn.value_weight |
|
self._entropy_weight = self._cfg.learn.entropy_weight |
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_update_theta} |
|
) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.learn.batch_size, |
|
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] |
|
) |
|
self._learn_model = model_wrap( |
|
self._model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.learn.batch_size, |
|
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] |
|
) |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _data_preprocess_learn(self, data: List[Any]) -> dict: |
|
r""" |
|
Overview: |
|
Preprocess the data to fit the required data format for learning |
|
|
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function, the Dict |
|
in data should contain keys including at least ['obs', 'action', 'reward'] |
|
|
|
Returns: |
|
- data (:obj:`Dict[str, Any]`): the processed data, including at least \ |
|
['obs', 'action', 'reward', 'done', 'weight'] |
|
""" |
|
|
|
data = timestep_collate(data) |
|
assert set(data.keys()) > set(['obs', 'action', 'reward']) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
data['weight'] = data.get('weight', None) |
|
data['done'] = data['done'].float() |
|
return data |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Forward and backward function of learn mode, acquire the data and calculate the loss and\ |
|
optimize learner model |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ |
|
np.ndarray or dict/list combinations. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ |
|
recorded in text log and tensorboard, values are python scalar or a list of scalars. |
|
ArgumentsKeys: |
|
- necessary: ``obs``, ``action``, ``reward``, ``done``, ``weight`` |
|
ReturnsKeys: |
|
- necessary: ``cur_lr``, ``total_loss``, ``policy_loss``, ``value_loss``, ``entropy_loss`` |
|
- cur_lr (:obj:`float`): Current learning rate |
|
- total_loss (:obj:`float`): The calculated loss |
|
- policy_loss (:obj:`float`): The policy(actor) loss of coma |
|
- value_loss (:obj:`float`): The value(critic) loss of coma |
|
- entropy_loss (:obj:`float`): The entropy loss |
|
""" |
|
data = self._data_preprocess_learn(data) |
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
self._learn_model.reset(state=data['prev_state'][0]) |
|
self._target_model.reset(state=data['prev_state'][0]) |
|
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] |
|
with torch.no_grad(): |
|
target_q_value = self._target_model.forward(data, mode='compute_critic')['q_value'] |
|
logit = self._learn_model.forward(data, mode='compute_actor')['logit'] |
|
logit[data['obs']['action_mask'] == 0.0] = -9999999 |
|
|
|
data = coma_data(logit, data['action'], q_value, target_q_value, data['reward'], data['weight']) |
|
coma_loss = coma_error(data, self._gamma, self._lambda) |
|
total_loss = self._policy_weight * coma_loss.policy_loss + self._value_weight * coma_loss.q_value_loss - \ |
|
self._entropy_weight * coma_loss.entropy_loss |
|
|
|
|
|
self._optimizer.zero_grad() |
|
total_loss.backward() |
|
self._optimizer.step() |
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': total_loss.item(), |
|
'policy_loss': coma_loss.policy_loss.item(), |
|
'value_loss': coma_loss.q_value_loss.item(), |
|
'entropy_loss': coma_loss.entropy_loss.item(), |
|
} |
|
|
|
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None: |
|
self._learn_model.reset(data_id=data_id) |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer': self._optimizer.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer.load_state_dict(state_dict['optimizer']) |
|
|
|
def _init_collect(self) -> None: |
|
r""" |
|
Overview: |
|
Collect mode init moethod. Called by ``self.__init__``. |
|
Init traj and unroll length, collect model. |
|
Model has eps_greedy_sample wrapper and hidden state wrapper |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._collect_model = model_wrap( |
|
self._model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.collect.env_num, |
|
save_prev_state=True, |
|
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] |
|
) |
|
self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: dict, eps: float) -> dict: |
|
r""" |
|
Overview: |
|
Collect output according to eps_greedy plugin |
|
|
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
data = {'obs': data} |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, eps=eps, data_id=data_id, mode='compute_actor') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _reset_collect(self, data_id: Optional[List[int]] = None) -> None: |
|
self._collect_model.reset(data_id=data_id) |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
r""" |
|
Overview: |
|
Generate dict type transition data from inputs. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state'] |
|
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ |
|
(here 'obs' indicates obs after env step). |
|
Returns: |
|
- transition (:obj:`dict`): Dict type transition data. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'prev_state': model_output['prev_state'], |
|
'action': model_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _init_eval(self) -> None: |
|
r""" |
|
Overview: |
|
Evaluate mode init method. Called by ``self.__init__``. |
|
Init eval model with argmax strategy and hidden_state plugin. |
|
""" |
|
self._eval_model = model_wrap( |
|
self._model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.eval.env_num, |
|
save_prev_state=True, |
|
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] |
|
) |
|
self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Forward function of eval mode, similar to ``self._forward_collect``. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
data = {'obs': data} |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data, data_id=data_id, mode='compute_actor') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None: |
|
self._eval_model.reset(data_id=data_id) |
|
|
|
def _get_train_sample(self, data: list) -> Union[None, List[Any]]: |
|
r""" |
|
Overview: |
|
Get the train sample from trajectory |
|
|
|
Arguments: |
|
- data (:obj:`list`): The trajectory's cache |
|
|
|
Returns: |
|
- samples (:obj:`dict`): The training samples generated |
|
""" |
|
return get_train_sample(data, self._unroll_len) |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
r""" |
|
Overview: |
|
Return variables' name if variables are to used in monitor. |
|
Returns: |
|
- vars (:obj:`List[str]`): Variables' name list. |
|
""" |
|
return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss'] |
|
|