zjowowen's picture
init space
079c32c
raw
history blame
18.4 kB
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
import torch
import copy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import coma_data, coma_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate, timestep_collate
from .base_policy import Policy
@POLICY_REGISTRY.register('coma')
class COMAPolicy(Policy):
r"""
Overview:
Policy class of COMA algorithm. COMA is a multi model reinforcement learning algorithm
Interface:
_init_learn, _data_preprocess_learn, _forward_learn, _reset_learn, _state_dict_learn, _load_state_dict_learn\
_init_collect, _forward_collect, _reset_collect, _process_transition, _init_eval, _forward_eval\
_reset_eval, _get_train_sample, default_model, _monitor_vars_learn
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str coma | RL policy register name, refer to | this arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff-
| erent from modes
3 ``on_policy`` bool True | Whether the RL algorithm is on-policy
| or off-policy
4. ``priority`` bool False | Whether use priority(PER) | priority sample,
| update priority
5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight
| ``IS_weight`` | Weight to correct biased update.
6 | ``learn.update`` int 1 | How many updates(iterations) to train | this args can be vary
| ``_per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
7 | ``learn.target_`` float 0.001 | Target network update momentum | between[0,1]
| ``update_theta`` | parameter.
8 | ``learn.discount`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse
| ``_factor`` | gamma | reward env
9 | ``learn.td_`` float 0.8 | The trade-off factor of td-lambda,
| ``lambda`` | which balances 1step td and mc
10 | ``learn.value_`` float 1.0 | The loss weight of value network | policy network weight
| ``weight`` | is set to 1
11 | ``learn.entropy_`` float 0.01 | The loss weight of entropy | policy network weight
| ``weight`` | regularization | is set to 1
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='coma',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
learn=dict(
update_per_collect=20,
batch_size=32,
learning_rate=0.0005,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) target network update weight, theta * new_w + (1 - theta) * old_w, defaults in [0, 0.1]
target_update_theta=0.001,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.99,
# (float) the trade-off factor of td-lambda, which balances 1step td and mc(nstep td in practice)
td_lambda=0.8,
# (float) the loss weight of policy network network
policy_weight=0.001,
# (float) the loss weight of value network
value_weight=1,
# (float) the loss weight of entropy regularization
entropy_weight=0.01,
),
collect=dict(
# (int) collect n_sample data, train model n_iteration time
# n_episode=32,
# (int) unroll length of a train iteration(gradient update step)
unroll_len=20,
),
eval=dict(),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default model setting for demonstration.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names
.. note::
The user can define and use customized network model but must obey the same inferface definition indicated \
by import_names path. For coma, ``ding.model.coma.coma``
"""
return 'coma', ['ding.model.template.coma']
def _init_learn(self) -> None:
"""
Overview:
Init the learner model of COMAPolicy
Arguments:
.. note::
The _init_learn method takes the argument from the self._cfg.learn in the config file
- learning_rate (:obj:`float`): The learning rate fo the optimizer
- gamma (:obj:`float`): The discount factor
- lambda (:obj:`float`): The lambda factor, determining the mix of bootstrapping\
vs further accumulation of multistep returns at each timestep,
- value_wight(:obj:`float`): The weight of value loss in total loss
- entropy_weight(:obj:`float`): The weight of entropy loss in total loss
- agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num.
- batch_size (:obj:`int`): Need batch size info to init hidden_state plugins
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority, "not implemented priority in COMA"
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._gamma = self._cfg.learn.discount_factor
self._lambda = self._cfg.learn.td_lambda
self._policy_weight = self._cfg.learn.policy_weight
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_update_theta}
)
self._target_model = model_wrap(
self._target_model,
wrapper_name='hidden_state',
state_num=self._cfg.learn.batch_size,
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
)
self._learn_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.learn.batch_size,
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
)
self._learn_model.reset()
self._target_model.reset()
def _data_preprocess_learn(self, data: List[Any]) -> dict:
r"""
Overview:
Preprocess the data to fit the required data format for learning
Arguments:
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function, the Dict
in data should contain keys including at least ['obs', 'action', 'reward']
Returns:
- data (:obj:`Dict[str, Any]`): the processed data, including at least \
['obs', 'action', 'reward', 'done', 'weight']
"""
# data preprocess
data = timestep_collate(data)
assert set(data.keys()) > set(['obs', 'action', 'reward'])
if self._cuda:
data = to_device(data, self._device)
data['weight'] = data.get('weight', None)
data['done'] = data['done'].float()
return data
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode, acquire the data and calculate the loss and\
optimize learner model
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
np.ndarray or dict/list combinations.
Returns:
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
recorded in text log and tensorboard, values are python scalar or a list of scalars.
ArgumentsKeys:
- necessary: ``obs``, ``action``, ``reward``, ``done``, ``weight``
ReturnsKeys:
- necessary: ``cur_lr``, ``total_loss``, ``policy_loss``, ``value_loss``, ``entropy_loss``
- cur_lr (:obj:`float`): Current learning rate
- total_loss (:obj:`float`): The calculated loss
- policy_loss (:obj:`float`): The policy(actor) loss of coma
- value_loss (:obj:`float`): The value(critic) loss of coma
- entropy_loss (:obj:`float`): The entropy loss
"""
data = self._data_preprocess_learn(data)
# forward
self._learn_model.train()
self._target_model.train()
self._learn_model.reset(state=data['prev_state'][0])
self._target_model.reset(state=data['prev_state'][0])
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
with torch.no_grad():
target_q_value = self._target_model.forward(data, mode='compute_critic')['q_value']
logit = self._learn_model.forward(data, mode='compute_actor')['logit']
logit[data['obs']['action_mask'] == 0.0] = -9999999
data = coma_data(logit, data['action'], q_value, target_q_value, data['reward'], data['weight'])
coma_loss = coma_error(data, self._gamma, self._lambda)
total_loss = self._policy_weight * coma_loss.policy_loss + self._value_weight * coma_loss.q_value_loss - \
self._entropy_weight * coma_loss.entropy_loss
# update
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
# after update
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': coma_loss.policy_loss.item(),
'value_loss': coma_loss.q_value_loss.item(),
'entropy_loss': coma_loss.entropy_loss.item(),
}
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
self._learn_model.reset(data_id=data_id)
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init moethod. Called by ``self.__init__``.
Init traj and unroll length, collect model.
Model has eps_greedy_sample wrapper and hidden state wrapper
"""
self._unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.collect.env_num,
save_prev_state=True,
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
)
self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
self._collect_model.reset()
def _forward_collect(self, data: dict, eps: float) -> dict:
r"""
Overview:
Collect output according to eps_greedy plugin
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
data = {'obs': data}
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, eps=eps, data_id=data_id, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
self._collect_model.reset(data_id=data_id)
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'prev_state': model_output['prev_state'],
'action': model_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy and hidden_state plugin.
"""
self._eval_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.eval.env_num,
save_prev_state=True,
init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
)
self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
data = {'obs': data}
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, data_id=data_id, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
self._eval_model.reset(data_id=data_id)
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
r"""
Overview:
Get the train sample from trajectory
Arguments:
- data (:obj:`list`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
return get_train_sample(data, self._unroll_len)
def _monitor_vars_learn(self) -> List[str]:
r"""
Overview:
Return variables' name if variables are to used in monitor.
Returns:
- vars (:obj:`List[str]`): Variables' name list.
"""
return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss']