zjowowen's picture
init space
079c32c
raw
history blame
20.5 kB
from typing import List, Dict, Any, Tuple, Union
import torch
import copy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import get_train_sample
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from .ddpg import DDPGPolicy
from .common_utils import default_preprocess_learn
import numpy as np
@POLICY_REGISTRY.register('d4pg')
class D4PGPolicy(DDPGPolicy):
"""
Overview:
Policy class of D4PG algorithm. D4PG is a variant of DDPG, which uses distributional critic. \
The distributional critic is implemented by using quantile regression. \
Paper link: https://arxiv.org/abs/1804.08617.
Property:
learn_mode, collect_mode, eval_mode
Config:
== ==================== ======== ============= ================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============= ================================= =======================
1 ``type`` str d4pg | RL policy register name, refer | this arg is optional,
| to registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool True | Whether to use cuda for network |
3 | ``random_`` int 25000 | Number of randomly collected | Default to 25000 for
| ``collect_size`` | training samples in replay | DDPG/TD3, 10000 for
| | buffer when training starts. | sac.
5 | ``learn.learning`` float 1e-3 | Learning rate for actor |
| ``_rate_actor`` | network(aka. policy). |
6 | ``learn.learning`` float 1e-3 | Learning rates for critic |
| ``_rate_critic`` | network (aka. Q-network). |
7 | ``learn.actor_`` int 1 | When critic network updates | Default 1
| ``update_freq`` | once, how many times will actor |
| | network update. |
8 | ``learn.noise`` bool False | Whether to add noise on target | Default False for
| | network's action. | D4PG.
| | | Target Policy Smoo-
| | | thing Regularization
| | | in TD3 paper.
9 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only
| ``ignore_done`` | done flag. | in halfcheetah env.
10 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation
| ``target_theta`` | target network. | factor in polyak aver
| | | aging for target
| | | networks.
11 | ``collect.-`` float 0.1 | Used for add noise during co- | Sample noise from dis
| ``noise_sigma`` | llection, through controlling | tribution, Gaussian
| | the sigma of distribution | process.
12 | ``model.v_min`` float -10 | Value of the smallest atom |
| | in the support set. |
13 | ``model.v_max`` float 10 | Value of the largest atom |
| | in the support set. |
14 | ``model.n_atom`` int 51 | Number of atoms in the support |
| | set of the value distribution. |
15 | ``nstep`` int 3, [1, 5] | N-step reward discount sum for |
| | target q_value estimation |
16 | ``priority`` bool True | Whether use priority(PER) | priority sample,
| update priority
== ==================== ======== ============= ================================= =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='d4pg',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool type) on_policy: Determine whether on-policy or off-policy.
# on-policy setting influences the behaviour of buffer.
# Default False in D4PG.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
# Default True in D4PG.
priority=True,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=True,
# (int) Number of training samples(randomly collected) in replay buffer when training starts.
# Default 25000 in D4PG.
random_collect_size=25000,
# (int) N-step reward for target q_value estimation
nstep=3,
# (str) Action space type
action_space='continuous', # ['continuous', 'hybrid']
# (bool) Whether use batch normalization for reward
reward_batch_norm=False,
# (bool) Whether to need policy data in process transition
transition_with_policy_data=False,
model=dict(
# (float) Value of the smallest atom in the support set.
# Default to -10.0.
v_min=-10,
# (float) Value of the smallest atom in the support set.
# Default to 10.0.
v_max=10,
# (int) Number of atoms in the support set of the
# value distribution. Default to 51.
n_atom=51
),
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=1,
# (int) Minibatch size for gradient descent.
batch_size=256,
# Learning rates for actor network(aka. policy).
learning_rate_actor=1e-3,
# Learning rates for critic network(aka. Q-network).
learning_rate_critic=1e-3,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with done is False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float type) target_theta: Used for soft update of the target network,
# aka. Interpolation factor in polyak averaging for target networks.
# Default to 0.005.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (int) When critic network updates once, how many times will actor network update.
actor_update_freq=1,
# (bool) Whether to add noise on target network's action.
# Target Policy Smoothing Regularization in original TD3 paper.
noise=False,
),
collect=dict(
# (int) Only one of [n_sample, n_episode] should be set
# n_sample=1,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# It is a must to add noise during collection. So here omits "noise" and only set "noise_sigma".
noise_sigma=0.1,
),
eval=dict(evaluator=dict(eval_freq=1000, ), ),
other=dict(
replay_buffer=dict(
# (int) Maximum size of replay buffer.
replay_buffer_size=1000000,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return the default neural network model class for D4PGPolicy. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
return 'qac_dist', ['ding.model.template.qac_dist']
def _init_learn(self) -> None:
"""
Overview:
Initialize the D4PG policy's learning mode, which involves setting up key components \
specific to the D4PG algorithm. This includes creating separate optimizers for the actor \
and critic networks, a distinctive trait of D4PG's actor-critic approach, and configuring \
algorithm-specific parameters such as v_min, v_max, and n_atom for the distributional aspect \
of the critic. Additionally, the method sets up the target model with momentum-based updates, \
crucial for stabilizing learning, and optionally integrates noise into the target model for \
effective exploration. This method is invoked during the '__init__' if 'learn' is specified \
in 'enable_field'.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
# actor and critic optimizer
self._optimizer_actor = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_actor,
)
self._optimizer_critic = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_critic,
)
self._reward_batch_norm = self._cfg.reward_batch_norm
self._gamma = self._cfg.learn.discount_factor
self._nstep = self._cfg.nstep
self._actor_update_freq = self._cfg.learn.actor_update_freq
# main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
if self._cfg.learn.noise:
self._target_model = model_wrap(
self._target_model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.learn.noise_sigma
},
noise_range=self._cfg.learn.noise_range
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
self._v_max = self._cfg.model.v_max
self._v_min = self._cfg.model.v_min
self._n_atom = self._cfg.model.n_atom
self._forward_learn_cnt = 0 # count iterations
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as different loss, actor and critic lr.
Arguments:
- data (:obj:`dict`): Input data used for policy forward, including the \
collected training samples from replay buffer. For each element in dict, the key of the \
dict is the name of data items and the value is the corresponding data. Usually, the value is \
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
often need to first be stacked in the batch dimension by some utility functions such as \
``default_preprocess_learn``. \
For D4PG, each element in list is a dict containing at least the following keys: ``obs``, \
``action``, ``reward``, ``next_obs``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The output result dict of forward learn, containing at \
least the "cur_lr_actor", "cur_lr_critic", "different losses", "q_value", "action", "priority", \
keys. Additionally, loss_dict also contains other keys, which are mainly used for monitoring and \
debugging. "q_value_dict" is used to record the q_value statistics.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for D4PGPolicy: ``ding.policy.tests.test_d4pg``.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._cfg.priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=True
)
if self._cuda:
data = to_device(data, self._device)
# ====================
# critic learn forward
# ====================
self._learn_model.train()
self._target_model.train()
next_obs = data.get('next_obs')
reward = data.get('reward')
if self._reward_batch_norm:
reward = (reward - reward.mean()) / (reward.std() + 1e-8)
# current q value
q_value = self._learn_model.forward(data, mode='compute_critic')
q_value_dict = {}
q_dist = q_value['distribution']
q_value_dict['q_value'] = q_value['q_value'].mean()
# target q value.
with torch.no_grad():
next_action = self._target_model.forward(next_obs, mode='compute_actor')['action']
next_data = {'obs': next_obs, 'action': next_action}
target_q_dist = self._target_model.forward(next_data, mode='compute_critic')['distribution']
value_gamma = data.get('value_gamma')
action_index = np.zeros(next_action.shape[0])
# since the action is a scalar value, action index is set to 0 which is the only possible choice
td_data = dist_nstep_td_data(
q_dist, target_q_dist, action_index, action_index, reward, data['done'], data['weight']
)
critic_loss, td_error_per_sample = dist_nstep_td_error(
td_data, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma
)
loss_dict['critic_loss'] = critic_loss
# ================
# critic update
# ================
self._optimizer_critic.zero_grad()
for k in loss_dict:
if 'critic' in k:
loss_dict[k].backward()
self._optimizer_critic.step()
# ===============================
# actor learn forward and update
# ===============================
# actor updates every ``self._actor_update_freq`` iters
if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0:
actor_data = self._learn_model.forward(data['obs'], mode='compute_actor')
actor_data['obs'] = data['obs']
actor_loss = -self._learn_model.forward(actor_data, mode='compute_critic')['q_value'].mean()
loss_dict['actor_loss'] = actor_loss
# actor update
self._optimizer_actor.zero_grad()
actor_loss.backward()
self._optimizer_actor.step()
# =============
# after update
# =============
loss_dict['total_loss'] = sum(loss_dict.values())
self._forward_learn_cnt += 1
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_actor': self._optimizer_actor.defaults['lr'],
'cur_lr_critic': self._optimizer_critic.defaults['lr'],
'q_value': q_value['q_value'].mean().item(),
'action': data['action'].mean().item(),
'priority': td_error_per_sample.abs().tolist(),
**loss_dict,
**q_value_dict,
}
def _get_train_sample(self, traj: list) -> Union[None, List[Any]]:
"""
Overview:
Process the data of a given trajectory (transitions, a list of transition) into a list of sample that \
can be used for training directly. The sample is generated by the following steps: \
1. Calculate the nstep return data. \
2. Sample the data from the nstep return data. \
3. Stack the data in the batch dimension. \
4. Return the sample data. \
For D4PG, the nstep return data is generated by ``get_nstep_return_data`` and the sample data is \
generated by ``get_train_sample``.
Arguments:
- traj (:obj:`list`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`dict`): The training samples generated, including at least the following keys: \
``'obs'``, ``'next_obs'``, ``'action'``, ``'reward'``, ``'done'``, ``'weight'``, ``'value_gamma'``. \
For more information, please refer to the ``get_train_sample`` method.
"""
data = get_nstep_return_data(traj, self._nstep, gamma=self._gamma)
return get_train_sample(data, self._unroll_len)
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
ret = ['cur_lr_actor', 'cur_lr_critic', 'critic_loss', 'actor_loss', 'total_loss', 'q_value', 'action']
return ret