gomoku / DI-engine /ding /policy /plan_diffuser.py
zjowowen's picture
init space
079c32c
raw
history blame
16.3 kB
from typing import List, Dict, Any, Optional, Tuple, Union
from collections import namedtuple, defaultdict
import copy
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import Normal, Independent
from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \
qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_nstep_return_data
from ding.policy import Policy
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, DatasetNormalizer
from ding.utils.data import default_collate, default_decollate
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('pd')
class PDPolicy(Policy):
r"""
Overview:
Implicit Plan Diffuser
https://arxiv.org/pdf/2205.09991.pdf
"""
config = dict(
type='pd',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool type) priority: Determine whether to use priority in buffer sample.
# Default False in SAC.
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (int) Number of training samples(randomly collected) in replay buffer when training starts.
# Default 10000 in SAC.
random_collect_size=10000,
nstep=1,
# normalizer type
normalizer='GaussianNormalizer',
model=dict(
diffuser_model='GaussianDiffusion',
diffuser_model_cfg=dict(
# the type of model
model='TemporalUnet',
# config of model
model_cfg=dict(
# model dim, In GaussianInvDynDiffusion, it is obs_dim. In others, it is obs_dim + action_dim
transition_dim=23,
dim=32,
dim_mults=[1, 2, 4, 8],
# whether use return as a condition
returns_condition=False,
condition_dropout=0.1,
# whether use calc energy
calc_energy=False,
kernel_size=5,
# whether use attention
attention=False,
),
# horizon of tarjectory which generated by model
horizon=80,
# timesteps of diffusion
n_timesteps=1000,
# hidden dim of action model
# Whether predict epsilon
predict_epsilon=True,
# discount of loss
loss_discount=1.0,
# whether clip denoise
clip_denoised=False,
action_weight=10,
),
value_model='ValueDiffusion',
value_model_cfg=dict(
# the type of model
model='TemporalValue',
# config of model
model_cfg=dict(
horizon=4,
# model dim, In GaussianInvDynDiffusion, it is obs_dim. In others, it is obs_dim + action_dim
transition_dim=23,
dim=32,
dim_mults=[1, 2, 4, 8],
# whether use calc energy
kernel_size=5,
),
# horizon of tarjectory which generated by model
horizon=80,
# timesteps of diffusion
n_timesteps=1000,
# hidden dim of action model
predict_epsilon=True,
# discount of loss
loss_discount=1.0,
# whether clip denoise
clip_denoised=False,
action_weight=1.0,
),
# guide_steps for p sample
n_guide_steps=2,
# scale of grad for p sample
scale=0.1,
# t of stopgrad for p sample
t_stopgrad=2,
# whether use std as a scale for grad
scale_grad_by_std=True,
),
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=1,
# (int) Minibatch size for gradient descent.
batch_size=100,
# (float type) learning_rate_q: Learning rate for model.
# Default to 3e-4.
# Please set to 1e-3, when model.value_network is True.
learning_rate=3e-4,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with done is False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float type) target_theta: Used for soft update of the target network,
# aka. Interpolation factor in polyak averaging for target networks.
# Default to 0.005.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
gradient_accumulate_every=2,
# train_epoch = train_epoch * gradient_accumulate_every
train_epoch=60000,
# batch_size of every env when eval
plan_batch_size=64,
# step start update target model and frequence
step_start_update_target=2000,
update_target_freq=10,
# update weight of target net
target_weight=0.995,
value_step=200e3,
# dataset weight include returns
include_returns=True,
# (float) Weight uniform initialization range in the last output layer
init_w=3e-3,
),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'pd', ['ding.model.template.diffusion']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init q, value and policy's optimizers, algorithm config, main and target models.
"""
# Init
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self.action_dim = self._cfg.model.diffuser_model_cfg.action_dim
self.obs_dim = self._cfg.model.diffuser_model_cfg.obs_dim
self.n_timesteps = self._cfg.model.diffuser_model_cfg.n_timesteps
self.gradient_accumulate_every = self._cfg.learn.gradient_accumulate_every
self.plan_batch_size = self._cfg.learn.plan_batch_size
self.gradient_steps = 1
self.update_target_freq = self._cfg.learn.update_target_freq
self.step_start_update_target = self._cfg.learn.step_start_update_target
self.target_weight = self._cfg.learn.target_weight
self.value_step = self._cfg.learn.value_step
self.use_target = False
self.horizon = self._cfg.model.diffuser_model_cfg.horizon
self.include_returns = self._cfg.learn.include_returns
# Optimizers
self._plan_optimizer = Adam(
self._model.diffuser.model.parameters(),
lr=self._cfg.learn.learning_rate,
)
if self._model.value:
self._value_optimizer = Adam(
self._model.value.model.parameters(),
lr=self._cfg.learn.learning_rate,
)
# Algorithm config
self._gamma = self._cfg.learn.discount_factor
# Main and target models
self._target_model = copy.deepcopy(self._model)
# self._target_model = model_wrap(
# self._target_model,
# wrapper_name='target',
# update_type='momentum',
# update_kwargs={'theta': self._cfg.learn.target_theta}
# )
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
# self._target_model.reset()
self._forward_learn_cnt = 0
def _forward_learn(self, data: dict) -> Dict[str, Any]:
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
conds = {}
vals = data['condition_val']
ids = data['condition_id']
for i in range(len(ids)):
conds[ids[i][0].item()] = vals[i]
if len(ids) > 1:
self.use_target = True
data['conditions'] = conds
if 'returns' in data.keys():
data['returns'] = data['returns'].unsqueeze(-1)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
# self._target_model.train()
x = data['trajectories']
batch_size = len(x)
t = torch.randint(0, self.n_timesteps, (batch_size, ), device=x.device).long()
cond = data['conditions']
if 'returns' in data.keys():
target = data['returns']
loss_dict['diffuse_loss'], loss_dict['a0_loss'] = self._model.diffuser_loss(x, cond, t)
loss_dict['diffuse_loss'] = loss_dict['diffuse_loss'] / self.gradient_accumulate_every
loss_dict['diffuse_loss'].backward()
if self._forward_learn_cnt < self.value_step and self._model.value:
loss_dict['value_loss'], logs = self._model.value_loss(x, cond, target, t)
loss_dict['value_loss'] = loss_dict['value_loss'] / self.gradient_accumulate_every
loss_dict['value_loss'].backward()
loss_dict.update(logs)
if self.gradient_steps >= self.gradient_accumulate_every:
self._plan_optimizer.step()
self._plan_optimizer.zero_grad()
if self._forward_learn_cnt < self.value_step and self._model.value:
self._value_optimizer.step()
self._value_optimizer.zero_grad()
self.gradient_steps = 1
else:
self.gradient_steps += 1
self._forward_learn_cnt += 1
if self._forward_learn_cnt % self.update_target_freq == 0:
if self._forward_learn_cnt < self.step_start_update_target:
self._target_model.load_state_dict(self._model.state_dict())
else:
self.update_model_average(self._target_model, self._learn_model)
if 'returns' in data.keys():
loss_dict['max_return'] = target.max().item()
loss_dict['min_return'] = target.min().item()
loss_dict['mean_return'] = target.mean().item()
loss_dict['max_traj'] = x.max().item()
loss_dict['min_traj'] = x.min().item()
loss_dict['mean_traj'] = x.mean().item()
return loss_dict
def update_model_average(self, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
if old_weight is None:
ma_params.data = up_weight
else:
old_weight * self.target_weight + (1 - self.target_weight) * up_weight
def _monitor_vars_learn(self) -> List[str]:
return [
'diffuse_loss',
'value_loss',
'max_return',
'min_return',
'mean_return',
'max_traj',
'min_traj',
'mean_traj',
'mean_pred',
'max_pred',
'min_pred',
'a0_loss',
]
def _state_dict_learn(self) -> Dict[str, Any]:
if self._model.value:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'plan_optimizer': self._plan_optimizer.state_dict(),
'value_optimizer': self._value_optimizer.state_dict(),
}
else:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'plan_optimizer': self._plan_optimizer.state_dict(),
}
def _init_eval(self):
self._eval_model = model_wrap(self._target_model, wrapper_name='base')
self._eval_model.reset()
if self.use_target:
self._plan_seq = []
def init_data_normalizer(self, normalizer: DatasetNormalizer = None):
self.normalizer = normalizer
def _forward_eval(self, data: dict) -> Dict[str, Any]:
data_id = list(data.keys())
data = default_collate(list(data.values()))
self._eval_model.eval()
if self.use_target:
cur_obs = self.normalizer.normalize(data[:, :self.obs_dim], 'observations')
target_obs = self.normalizer.normalize(data[:, self.obs_dim:], 'observations')
else:
obs = self.normalizer.normalize(data, 'observations')
with torch.no_grad():
if self.use_target:
cur_obs = torch.tensor(cur_obs)
target_obs = torch.tensor(target_obs)
if self._cuda:
cur_obs = to_device(cur_obs, self._device)
target_obs = to_device(target_obs, self._device)
conditions = {0: cur_obs, self.horizon - 1: target_obs}
else:
obs = torch.tensor(obs)
if self._cuda:
obs = to_device(obs, self._device)
conditions = {0: obs}
if self.use_target:
if self._plan_seq == [] or 0 in self._eval_t:
plan_traj = self._eval_model.get_eval(conditions, self.plan_batch_size)
plan_traj = to_device(plan_traj, 'cpu').numpy()
if self._plan_seq == []:
self._plan_seq = plan_traj
self._eval_t = [0] * len(data_id)
else:
for id in data_id:
if self._eval_t[id] == 0:
self._plan_seq[id] = plan_traj[id]
action = []
for id in data_id:
if self._eval_t[id] < len(self._plan_seq[id]) - 1:
next_waypoint = self._plan_seq[id][self._eval_t[id] + 1]
else:
next_waypoint = self._plan_seq[id][-1].copy()
next_waypoint[2:] = 0
cur_ob = cur_obs[id]
cur_ob = to_device(cur_ob, 'cpu').numpy()
act = next_waypoint[:2] - cur_ob[:2] + (next_waypoint[2:] - cur_ob[2:])
action.append(act)
self._eval_t[id] += 1
else:
action = self._eval_model.get_eval(conditions, self.plan_batch_size)
if self._cuda:
action = to_device(action, 'cpu')
action = self.normalizer.unnormalize(action, 'actions')
action = torch.tensor(action).to('cpu')
output = {'action': action}
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
if self.use_target and data_id:
for id in data_id:
self._eval_t[id] = 0
def _init_collect(self) -> None:
pass
def _forward_collect(self, data: dict, **kwargs) -> dict:
pass
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
pass
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
pass