zjowowen's picture
init space
079c32c
raw
history blame
16.2 kB
from typing import List, Dict, Any, Tuple, Union, Callable, Optional
from collections import namedtuple
from easydict import EasyDict
import copy
import random
import numpy as np
import torch
import treetensor.torch as ttorch
from torch.optim import AdamW
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, gae, gae_data, ppo_error_continuous, \
get_gae, ppo_policy_error_continuous, ArgmaxSampler, MultinomialSampler, ReparameterizationSampler, MuSampler, \
HybridStochasticSampler, HybridDeterminsticSampler, value_transform, value_inv_transform, symlog, inv_symlog
from ding.utils import POLICY_REGISTRY, RunningMeanStd
@POLICY_REGISTRY.register('ppof')
class PPOFPolicy:
config = dict(
type='ppo',
on_policy=True,
cuda=True,
action_space='discrete',
discount_factor=0.99,
gae_lambda=0.95,
# learn
epoch_per_collect=10,
batch_size=64,
learning_rate=3e-4,
# learningrate scheduler, which the format is (10000, 0.1)
lr_scheduler=None,
weight_decay=0,
value_weight=0.5,
entropy_weight=0.01,
clip_ratio=0.2,
adv_norm=True,
value_norm='baseline',
ppo_param_init=True,
grad_norm=0.5,
# collect
n_sample=128,
unroll_len=1,
# eval
deterministic_eval=True,
# model
model=dict(),
)
mode = ['learn', 'collect', 'eval']
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
@classmethod
def default_model(cls: type) -> Callable:
from .model import PPOFModel
return PPOFModel
def __init__(self, cfg: "EasyDict", model: torch.nn.Module, enable_mode: List[str] = None) -> None:
self._cfg = cfg
if model is None:
self._model = self.default_model()
else:
self._model = model
if self._cfg.cuda and torch.cuda.is_available():
self._device = 'cuda'
self._model.cuda()
else:
self._device = 'cpu'
assert self._cfg.action_space in ["continuous", "discrete", "hybrid", 'multi_discrete']
self._action_space = self._cfg.action_space
if self._cfg.ppo_param_init:
self._model_param_init()
if enable_mode is None:
enable_mode = self.mode
self.enable_mode = enable_mode
if 'learn' in enable_mode:
self._optimizer = AdamW(
self._model.parameters(),
lr=self._cfg.learning_rate,
weight_decay=self._cfg.weight_decay,
)
# define linear lr scheduler
if self._cfg.lr_scheduler is not None:
epoch_num, min_lr_lambda = self._cfg.lr_scheduler
self._lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
self._optimizer,
lr_lambda=lambda epoch: max(1.0 - epoch * (1.0 - min_lr_lambda) / epoch_num, min_lr_lambda)
)
if self._cfg.value_norm:
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
if 'collect' in enable_mode:
if self._action_space == 'discrete':
self._collect_sampler = MultinomialSampler()
elif self._action_space == 'continuous':
self._collect_sampler = ReparameterizationSampler()
elif self._action_space == 'hybrid':
self._collect_sampler = HybridStochasticSampler()
if 'eval' in enable_mode:
if self._action_space == 'discrete':
if self._cfg.deterministic_eval:
self._eval_sampler = ArgmaxSampler()
else:
self._eval_sampler = MultinomialSampler()
elif self._action_space == 'continuous':
if self._cfg.deterministic_eval:
self._eval_sampler = MuSampler()
else:
self._eval_sampler = ReparameterizationSampler()
elif self._action_space == 'hybrid':
if self._cfg.deterministic_eval:
self._eval_sampler = HybridDeterminsticSampler()
else:
self._eval_sampler = HybridStochasticSampler()
# for compatibility
self.learn_mode = self
self.collect_mode = self
self.eval_mode = self
def _model_param_init(self):
for n, m in self._model.named_modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
if self._action_space in ['continuous', 'hybrid']:
for m in list(self._model.critic.modules()) + list(self._model.actor.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# init log sigma
if self._action_space == 'continuous':
torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -0.5)
for m in self._model.actor_head.mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
elif self._action_space == 'hybrid': # actor_head[1]: ReparameterizationHead, for action_args
if hasattr(self._model.actor_head[1], 'log_sigma_param'):
torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5)
for m in self._model.actor_head[1].mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
def forward(self, data: ttorch.Tensor) -> Dict[str, Any]:
return_infos = []
self._model.train()
bs = self._cfg.batch_size
data = data[:self._cfg.n_sample // bs * bs] # rounding
# outer training loop
for epoch in range(self._cfg.epoch_per_collect):
# recompute adv
with torch.no_grad():
# get the value dictionary
# In popart, the dictionary has two keys: 'pred' and 'unnormalized_pred'
value = self._model.compute_critic(data.obs)
next_value = self._model.compute_critic(data.next_obs)
reward = data.reward
assert self._cfg.value_norm in ['popart', 'value_rescale', 'symlog', 'baseline'],\
'Not supported value normalization! Value normalization supported: \
popart, value rescale, symlog, baseline'
if self._cfg.value_norm == 'popart':
unnormalized_value = value['unnormalized_pred']
unnormalized_next_value = value['unnormalized_pred']
mu = self._model.critic_head.popart.mu
sigma = self._model.critic_head.popart.sigma
reward = (reward - mu) / sigma
value = value['pred']
next_value = next_value['pred']
elif self._cfg.value_norm == 'value_rescale':
value = value_inv_transform(value['pred'])
next_value = value_inv_transform(next_value['pred'])
elif self._cfg.value_norm == 'symlog':
value = inv_symlog(value['pred'])
next_value = inv_symlog(next_value['pred'])
elif self._cfg.value_norm == 'baseline':
value = value['pred'] * self._running_mean_std.std
next_value = next_value['pred'] * self._running_mean_std.std
traj_flag = data.get('traj_flag', None) # traj_flag indicates termination of trajectory
adv_data = gae_data(value, next_value, reward, data.done, traj_flag)
data.adv = gae(adv_data, self._cfg.discount_factor, self._cfg.gae_lambda)
unnormalized_returns = value + data.adv # In popart, this return is normalized
if self._cfg.value_norm == 'popart':
self._model.critic_head.popart.update_parameters((data.reward).unsqueeze(1))
elif self._cfg.value_norm == 'value_rescale':
value = value_transform(value)
unnormalized_returns = value_transform(unnormalized_returns)
elif self._cfg.value_norm == 'symlog':
value = symlog(value)
unnormalized_returns = symlog(unnormalized_returns)
elif self._cfg.value_norm == 'baseline':
value /= self._running_mean_std.std
unnormalized_returns /= self._running_mean_std.std
self._running_mean_std.update(unnormalized_returns.cpu().numpy())
data.value = value
data.return_ = unnormalized_returns
# inner training loop
split_data = ttorch.split(data, self._cfg.batch_size)
random.shuffle(list(split_data))
for batch in split_data:
output = self._model.compute_actor_critic(batch.obs)
adv = batch.adv
if self._cfg.adv_norm:
# Normalize advantage in a train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo error
if self._action_space == 'continuous':
ppo_batch = ppo_data(
output.logit, batch.logit, batch.action, output.value, batch.value, adv, batch.return_, None
)
ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._cfg.clip_ratio)
elif self._action_space == 'discrete':
ppo_batch = ppo_data(
output.logit, batch.logit, batch.action, output.value, batch.value, adv, batch.return_, None
)
ppo_loss, ppo_info = ppo_error(ppo_batch, self._cfg.clip_ratio)
elif self._action_space == 'hybrid':
# discrete part (discrete policy loss and entropy loss)
ppo_discrete_batch = ppo_policy_data(
output.logit.action_type, batch.logit.action_type, batch.action.action_type, adv, None
)
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._cfg.clip_ratio)
# continuous part (continuous policy loss and entropy loss, value loss)
ppo_continuous_batch = ppo_data(
output.logit.action_args, batch.logit.action_args, batch.action.action_args, output.value,
batch.value, adv, batch.return_, None
)
ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(
ppo_continuous_batch, self._cfg.clip_ratio
)
# sum discrete and continuous loss
ppo_loss = type(ppo_continuous_loss)(
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss,
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss
)
ppo_info = type(ppo_continuous_info)(
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl),
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac)
)
wv, we = self._cfg.value_weight, self._cfg.entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss
self._optimizer.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(self._model.parameters(), self._cfg.grad_norm)
self._optimizer.step()
return_info = {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_max': adv.max().item(),
'adv_mean': adv.mean().item(),
'value_mean': output.value.mean().item(),
'value_max': output.value.max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
if self._action_space == 'continuous':
return_info.update(
{
'action': batch.action.float().mean().item(),
'mu_mean': output.logit.mu.mean().item(),
'sigma_mean': output.logit.sigma.mean().item(),
}
)
elif self._action_space == 'hybrid':
return_info.update(
{
'action': batch.action.action_args.float().mean().item(),
'mu_mean': output.logit.action_args.mu.mean().item(),
'sigma_mean': output.logit.action_args.sigma.mean().item(),
}
)
return_infos.append(return_info)
if self._cfg.lr_scheduler is not None:
self._lr_scheduler.step()
return return_infos
def state_dict(self) -> Dict[str, Any]:
state_dict = {
'model': self._model.state_dict(),
}
if 'learn' in self.enable_mode:
state_dict['optimizer'] = self._optimizer.state_dict()
return state_dict
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
self._model.load_state_dict(state_dict['model'])
if 'learn' in self.enable_mode:
self._optimizer.load_state_dict(state_dict['optimizer'])
def collect(self, data: ttorch.Tensor) -> ttorch.Tensor:
self._model.eval()
with torch.no_grad():
output = self._model.compute_actor_critic(data)
action = self._collect_sampler(output.logit)
output.action = action
return output
def process_transition(self, obs: ttorch.Tensor, inference_output: dict, timestep: namedtuple) -> ttorch.Tensor:
return ttorch.as_tensor(
{
'obs': obs,
'next_obs': timestep.obs,
'action': inference_output.action,
'logit': inference_output.logit,
'value': inference_output.value,
'reward': timestep.reward,
'done': timestep.done,
}
)
def eval(self, data: ttorch.Tensor) -> ttorch.Tensor:
self._model.eval()
with torch.no_grad():
logit = self._model.compute_actor(data)
action = self._eval_sampler(logit)
return ttorch.as_tensor({'logit': logit, 'action': action})
def monitor_vars(self) -> List[str]:
variables = [
'cur_lr',
'policy_loss',
'value_loss',
'entropy_loss',
'adv_max',
'adv_mean',
'approx_kl',
'clipfrac',
'value_max',
'value_mean',
]
if self._action_space in ['action', 'mu_mean', 'sigma_mean']:
variables += ['mu_mean', 'sigma_mean', 'action']
return variables
def reset(self, env_id_list: Optional[List[int]] = None) -> None:
pass