|
from typing import List, Dict, Any, Tuple, Union |
|
from collections import namedtuple |
|
import copy |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.distributions import Normal, Independent |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, q_v_1step_td_error, q_v_1step_td_data |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
from .base_policy import Policy |
|
from .common_utils import default_preprocess_learn |
|
|
|
|
|
@POLICY_REGISTRY.register('discrete_sac') |
|
class DiscreteSACPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of discrete SAC algorithm. Paper link: https://arxiv.org/abs/1910.07207. |
|
""" |
|
|
|
config = dict( |
|
|
|
type='discrete_sac', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
random_collect_size=10000, |
|
|
|
transition_with_policy_data=True, |
|
|
|
multi_agent=False, |
|
model=dict( |
|
|
|
|
|
twin_critic=True, |
|
), |
|
|
|
learn=dict( |
|
|
|
|
|
update_per_collect=1, |
|
|
|
batch_size=256, |
|
|
|
learning_rate_q=3e-4, |
|
|
|
learning_rate_policy=3e-4, |
|
|
|
learning_rate_alpha=3e-4, |
|
|
|
|
|
target_theta=0.005, |
|
|
|
discount_factor=0.99, |
|
|
|
|
|
|
|
alpha=0.2, |
|
|
|
|
|
|
|
|
|
auto_alpha=True, |
|
|
|
log_space=True, |
|
|
|
target_entropy=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ignore_done=False, |
|
|
|
init_w=3e-3, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
n_sample=1, |
|
|
|
unroll_len=1, |
|
|
|
|
|
collector_logit=False, |
|
), |
|
eval=dict(), |
|
other=dict( |
|
replay_buffer=dict( |
|
|
|
|
|
replay_buffer_size=1000000, |
|
), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
""" |
|
if self._cfg.multi_agent: |
|
return 'discrete_maqac', ['ding.model.template.maqac'] |
|
else: |
|
return 'discrete_qac', ['ding.model.template.qac'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For DiscreteSAC, it mainly \ |
|
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \ |
|
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
self._twin_critic = self._cfg.model.twin_critic |
|
|
|
self._optimizer_q = Adam( |
|
self._model.critic.parameters(), |
|
lr=self._cfg.learn.learning_rate_q, |
|
) |
|
self._optimizer_policy = Adam( |
|
self._model.actor.parameters(), |
|
lr=self._cfg.learn.learning_rate_policy, |
|
) |
|
|
|
|
|
self._gamma = self._cfg.learn.discount_factor |
|
if self._cfg.learn.auto_alpha: |
|
if self._cfg.learn.target_entropy is None: |
|
assert 'action_shape' in self._cfg.model, "DiscreteSAC need network model with action_shape variable" |
|
self._target_entropy = -np.prod(self._cfg.model.action_shape) |
|
else: |
|
self._target_entropy = self._cfg.learn.target_entropy |
|
if self._cfg.learn.log_space: |
|
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha])) |
|
self._log_alpha = self._log_alpha.to(self._device).requires_grad_() |
|
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha) |
|
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad |
|
self._alpha = self._log_alpha.detach().exp() |
|
self._auto_alpha = True |
|
self._log_space = True |
|
else: |
|
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_() |
|
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha) |
|
self._auto_alpha = True |
|
self._log_space = False |
|
else: |
|
self._alpha = torch.tensor( |
|
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32 |
|
) |
|
self._auto_alpha = False |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_theta} |
|
) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, action, priority. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``logit``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys like ``weight``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \ |
|
``ding.policy.tests.test_discrete_sac``. |
|
""" |
|
loss_dict = {} |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=False |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
obs = data['obs'] |
|
next_obs = data['next_obs'] |
|
reward = data['reward'] |
|
done = data['done'] |
|
logit = data['logit'] |
|
action = data['action'] |
|
|
|
|
|
q_value = self._learn_model.forward(obs, mode='compute_critic')['q_value'] |
|
dist = torch.distributions.categorical.Categorical(logits=logit) |
|
dist_entropy = dist.entropy() |
|
entropy = dist_entropy.mean() |
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
policy_output_next = self._learn_model.forward(next_obs, mode='compute_actor') |
|
if self._cfg.multi_agent: |
|
policy_output_next['logit'][policy_output_next['action_mask'] == 0.0] = -1e8 |
|
prob = F.softmax(policy_output_next['logit'], dim=-1) |
|
log_prob = torch.log(prob + 1e-8) |
|
target_q_value = self._target_model.forward(next_obs, mode='compute_critic')['q_value'] |
|
|
|
if self._twin_critic: |
|
|
|
target_value = ( |
|
prob * (torch.min(target_q_value[0], target_q_value[1]) - self._alpha * log_prob.squeeze(-1)) |
|
).sum(dim=-1) |
|
else: |
|
target_value = (prob * (target_q_value - self._alpha * log_prob.squeeze(-1))).sum(dim=-1) |
|
|
|
|
|
if self._twin_critic: |
|
q_data0 = q_v_1step_td_data(q_value[0], target_value, action, reward, done, data['weight']) |
|
loss_dict['critic_loss'], td_error_per_sample0 = q_v_1step_td_error(q_data0, self._gamma) |
|
q_data1 = q_v_1step_td_data(q_value[1], target_value, action, reward, done, data['weight']) |
|
loss_dict['twin_critic_loss'], td_error_per_sample1 = q_v_1step_td_error(q_data1, self._gamma) |
|
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2 |
|
else: |
|
q_data = q_v_1step_td_data(q_value, target_value, action, reward, done, data['weight']) |
|
loss_dict['critic_loss'], td_error_per_sample = q_v_1step_td_error(q_data, self._gamma) |
|
|
|
|
|
self._optimizer_q.zero_grad() |
|
loss_dict['critic_loss'].backward() |
|
if self._twin_critic: |
|
loss_dict['twin_critic_loss'].backward() |
|
self._optimizer_q.step() |
|
|
|
|
|
policy_output = self._learn_model.forward(obs, mode='compute_actor') |
|
|
|
if self._cfg.multi_agent: |
|
policy_output['logit'][policy_output['action_mask'] == 0.0] = -1e8 |
|
logit = policy_output['logit'] |
|
prob = F.softmax(logit, dim=-1) |
|
log_prob = F.log_softmax(logit, dim=-1) |
|
|
|
with torch.no_grad(): |
|
new_q_value = self._learn_model.forward(obs, mode='compute_critic')['q_value'] |
|
if self._twin_critic: |
|
new_q_value = torch.min(new_q_value[0], new_q_value[1]) |
|
|
|
|
|
policy_loss = (prob * (self._alpha * log_prob - new_q_value)).sum(dim=-1).mean() |
|
|
|
loss_dict['policy_loss'] = policy_loss |
|
|
|
|
|
self._optimizer_policy.zero_grad() |
|
loss_dict['policy_loss'].backward() |
|
self._optimizer_policy.step() |
|
|
|
|
|
if self._auto_alpha: |
|
if self._log_space: |
|
log_prob = log_prob + self._target_entropy |
|
loss_dict['alpha_loss'] = (-prob.detach() * (self._log_alpha * log_prob.detach())).sum(dim=-1).mean() |
|
|
|
self._alpha_optim.zero_grad() |
|
loss_dict['alpha_loss'].backward() |
|
self._alpha_optim.step() |
|
self._alpha = self._log_alpha.detach().exp() |
|
else: |
|
log_prob = log_prob + self._target_entropy |
|
loss_dict['alpha_loss'] = (-prob.detach() * (self._alpha * log_prob.detach())).sum(dim=-1).mean() |
|
|
|
self._alpha_optim.zero_grad() |
|
loss_dict['alpha_loss'].backward() |
|
self._alpha_optim.step() |
|
self._alpha.data = torch.where(self._alpha > 0, self._alpha, |
|
torch.zeros_like(self._alpha)).requires_grad_() |
|
loss_dict['total_loss'] = sum(loss_dict.values()) |
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'total_loss': loss_dict['total_loss'].item(), |
|
'policy_loss': loss_dict['policy_loss'].item(), |
|
'critic_loss': loss_dict['critic_loss'].item(), |
|
'cur_lr_q': self._optimizer_q.defaults['lr'], |
|
'cur_lr_p': self._optimizer_policy.defaults['lr'], |
|
'priority': td_error_per_sample.abs().tolist(), |
|
'td_error': td_error_per_sample.detach().mean().item(), |
|
'alpha': self._alpha.item(), |
|
'q_value_1': target_q_value[0].detach().mean().item(), |
|
'q_value_2': target_q_value[1].detach().mean().item(), |
|
'target_value': target_value.detach().mean().item(), |
|
'entropy': entropy.item(), |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model, target_model and optimizers. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. |
|
""" |
|
ret = { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer_q': self._optimizer_q.state_dict(), |
|
'optimizer_policy': self._optimizer_policy.state_dict(), |
|
} |
|
if self._auto_alpha: |
|
ret.update({'optimizer_alpha': self._alpha_optim.state_dict()}) |
|
return ret |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer_q.load_state_dict(state_dict['optimizer_q']) |
|
self._optimizer_policy.load_state_dict(state_dict['optimizer_policy']) |
|
if self._auto_alpha: |
|
self._alpha_optim.load_state_dict(state_dict['optimizer_alpha']) |
|
|
|
def _init_collect(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the collect mode of policy, including related attributes and modules. For SAC, it contains the \ |
|
collect_model to balance the exploration and exploitation with the epsilon and multinomial sample \ |
|
mechanism, and other algorithm-specific arguments such as unroll_len. \ |
|
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ |
|
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
|
|
|
|
|
|
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_multinomial_sample') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ |
|
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ |
|
data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \ |
|
exploration, i.e., classic epsilon-greedy exploration strategy. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
- eps (:obj:`float`): The epsilon value for exploration. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ |
|
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ |
|
dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \ |
|
``ding.policy.tests.test_discrete_sac``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, mode='compute_actor', eps=eps) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], |
|
timestep: namedtuple) -> Dict[str, torch.Tensor]: |
|
""" |
|
Overview: |
|
Process and pack one timestep transition data into a dict, which can be directly used for training and \ |
|
saved in replay buffer. For discrete SAC, it contains obs, next_obs, logit, action, reward, done. |
|
Arguments: |
|
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. |
|
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ |
|
as input. For discrete SAC, it contains the action and the logit of the action. |
|
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ |
|
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ |
|
reward, done, info, etc. |
|
Returns: |
|
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'action': policy_output['action'], |
|
'logit': policy_output['logit'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. In discrete SAC, a train sample is a processed transition (unroll_len=1). |
|
Arguments: |
|
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ |
|
the same format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ |
|
as input transitions, but may contain more data for training. |
|
""" |
|
return get_train_sample(transitions, self._unroll_len) |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For DiscreteSAC, it contains \ |
|
the eval model to greedily select action type with argmax q_value mechanism. |
|
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ |
|
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ |
|
action to interact with the envs. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \ |
|
``ding.policy.tests.test_discrete_sac``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data, mode='compute_actor') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
twin_critic = ['twin_critic_loss'] if self._twin_critic else [] |
|
if self._auto_alpha: |
|
return super()._monitor_vars_learn() + [ |
|
'alpha_loss', 'policy_loss', 'critic_loss', 'cur_lr_q', 'cur_lr_p', 'target_q_value', 'q_value_1', |
|
'q_value_2', 'alpha', 'td_error', 'target_value', 'entropy' |
|
] + twin_critic |
|
else: |
|
return super()._monitor_vars_learn() + [ |
|
'policy_loss', 'critic_loss', 'cur_lr_q', 'cur_lr_p', 'target_q_value', 'q_value_1', 'q_value_2', |
|
'alpha', 'td_error', 'target_value', 'entropy' |
|
] + twin_critic |
|
|
|
|
|
@POLICY_REGISTRY.register('sac') |
|
class SACPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of continuous SAC algorithm. Paper link: https://arxiv.org/pdf/1801.01290.pdf |
|
|
|
Config: |
|
== ==================== ======== ============= ================================= ======================= |
|
ID Symbol Type Default Value Description Other |
|
== ==================== ======== ============= ================================= ======================= |
|
1 ``type`` str sac | RL policy register name, refer | this arg is optional, |
|
| to registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool True | Whether to use cuda for network | |
|
3 ``on_policy`` bool False | SAC is an off-policy | |
|
| algorithm. | |
|
4 ``priority`` bool False | Whether to use priority | |
|
| sampling in buffer. | |
|
5 | ``priority_IS_`` bool False | Whether use Importance Sampling | |
|
| ``weight`` | weight to correct biased update | |
|
6 | ``random_`` int 10000 | Number of randomly collected | Default to 10000 for |
|
| ``collect_size`` | training samples in replay | SAC, 25000 for DDPG/ |
|
| | buffer when training starts. | TD3. |
|
7 | ``learn.learning`` float 3e-4 | Learning rate for soft q | Defalut to 1e-3 |
|
| ``_rate_q`` | network. | |
|
8 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to 1e-3 |
|
| ``_rate_policy`` | network. | |
|
9 | ``learn.alpha`` float 0.2 | Entropy regularization | alpha is initiali- |
|
| | coefficient. | zation for auto |
|
| | | alpha, when |
|
| | | auto_alpha is True |
|
10 | ``learn.`` bool False | Determine whether to use | Temperature parameter |
|
| ``auto_alpha`` | auto temperature parameter | determines the |
|
| | alpha. | relative importance |
|
| | | of the entropy term |
|
| | | against the reward. |
|
11 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only |
|
| ``ignore_done`` | done flag. | in env like Pendulum |
|
12 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation |
|
| ``target_theta`` | target network. | factor in polyak aver |
|
| | | aging for target |
|
| | | networks. |
|
== ==================== ======== ============= ================================= ======================= |
|
""" |
|
|
|
config = dict( |
|
|
|
type='sac', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
random_collect_size=10000, |
|
|
|
transition_with_policy_data=True, |
|
|
|
multi_agent=False, |
|
model=dict( |
|
|
|
|
|
twin_critic=True, |
|
|
|
action_space='reparameterization', |
|
), |
|
|
|
learn=dict( |
|
|
|
|
|
update_per_collect=1, |
|
|
|
batch_size=256, |
|
|
|
learning_rate_q=3e-4, |
|
|
|
learning_rate_policy=3e-4, |
|
|
|
learning_rate_alpha=3e-4, |
|
|
|
|
|
target_theta=0.005, |
|
|
|
discount_factor=0.99, |
|
|
|
|
|
|
|
alpha=0.2, |
|
|
|
|
|
|
|
|
|
auto_alpha=True, |
|
|
|
log_space=True, |
|
|
|
target_entropy=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ignore_done=False, |
|
|
|
init_w=3e-3, |
|
), |
|
|
|
collect=dict( |
|
|
|
n_sample=1, |
|
|
|
unroll_len=1, |
|
|
|
|
|
collector_logit=False, |
|
), |
|
eval=dict(), |
|
other=dict( |
|
replay_buffer=dict( |
|
|
|
|
|
replay_buffer_size=1000000, |
|
), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
""" |
|
if self._cfg.multi_agent: |
|
return 'continuous_maqac', ['ding.model.template.maqac'] |
|
else: |
|
return 'continuous_qac', ['ding.model.template.qac'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \ |
|
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \ |
|
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
self._twin_critic = self._cfg.model.twin_critic |
|
|
|
|
|
if hasattr(self._model, 'actor_head'): |
|
init_w = self._cfg.learn.init_w |
|
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w) |
|
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w) |
|
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w) |
|
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w) |
|
|
|
self._optimizer_q = Adam( |
|
self._model.critic.parameters(), |
|
lr=self._cfg.learn.learning_rate_q, |
|
) |
|
self._optimizer_policy = Adam( |
|
self._model.actor.parameters(), |
|
lr=self._cfg.learn.learning_rate_policy, |
|
) |
|
|
|
|
|
self._gamma = self._cfg.learn.discount_factor |
|
if self._cfg.learn.auto_alpha: |
|
if self._cfg.learn.target_entropy is None: |
|
assert 'action_shape' in self._cfg.model, "SAC need network model with action_shape variable" |
|
self._target_entropy = -np.prod(self._cfg.model.action_shape) |
|
else: |
|
self._target_entropy = self._cfg.learn.target_entropy |
|
if self._cfg.learn.log_space: |
|
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha])) |
|
self._log_alpha = self._log_alpha.to(self._device).requires_grad_() |
|
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha) |
|
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad |
|
self._alpha = self._log_alpha.detach().exp() |
|
self._auto_alpha = True |
|
self._log_space = True |
|
else: |
|
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_() |
|
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha) |
|
self._auto_alpha = True |
|
self._log_space = False |
|
else: |
|
self._alpha = torch.tensor( |
|
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32 |
|
) |
|
self._auto_alpha = False |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_theta} |
|
) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, action, priority. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. |
|
""" |
|
loss_dict = {} |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=False |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
obs = data['obs'] |
|
next_obs = data['next_obs'] |
|
reward = data['reward'] |
|
done = data['done'] |
|
|
|
|
|
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] |
|
|
|
|
|
with torch.no_grad(): |
|
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit'] |
|
|
|
dist = Independent(Normal(mu, sigma), 1) |
|
pred = dist.rsample() |
|
next_action = torch.tanh(pred) |
|
y = 1 - next_action.pow(2) + 1e-6 |
|
|
|
next_log_prob = dist.log_prob(pred).unsqueeze(-1) |
|
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True) |
|
|
|
next_data = {'obs': next_obs, 'action': next_action} |
|
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value'] |
|
|
|
if self._twin_critic: |
|
|
|
target_q_value = torch.min(target_q_value[0], |
|
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1) |
|
else: |
|
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1) |
|
|
|
|
|
if self._twin_critic: |
|
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight']) |
|
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma) |
|
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight']) |
|
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma) |
|
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2 |
|
else: |
|
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight']) |
|
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma) |
|
|
|
|
|
self._optimizer_q.zero_grad() |
|
if self._twin_critic: |
|
(loss_dict['critic_loss'] + loss_dict['twin_critic_loss']).backward() |
|
else: |
|
loss_dict['critic_loss'].backward() |
|
self._optimizer_q.step() |
|
|
|
|
|
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit'] |
|
dist = Independent(Normal(mu, sigma), 1) |
|
pred = dist.rsample() |
|
action = torch.tanh(pred) |
|
y = 1 - action.pow(2) + 1e-6 |
|
|
|
log_prob = dist.log_prob(pred).unsqueeze(-1) |
|
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True) |
|
|
|
eval_data = {'obs': obs, 'action': action} |
|
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] |
|
if self._twin_critic: |
|
new_q_value = torch.min(new_q_value[0], new_q_value[1]) |
|
|
|
|
|
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean() |
|
|
|
loss_dict['policy_loss'] = policy_loss |
|
|
|
|
|
self._optimizer_policy.zero_grad() |
|
loss_dict['policy_loss'].backward() |
|
self._optimizer_policy.step() |
|
|
|
|
|
if self._auto_alpha: |
|
if self._log_space: |
|
log_prob = log_prob + self._target_entropy |
|
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean() |
|
|
|
self._alpha_optim.zero_grad() |
|
loss_dict['alpha_loss'].backward() |
|
self._alpha_optim.step() |
|
self._alpha = self._log_alpha.detach().exp() |
|
else: |
|
log_prob = log_prob + self._target_entropy |
|
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean() |
|
|
|
self._alpha_optim.zero_grad() |
|
loss_dict['alpha_loss'].backward() |
|
self._alpha_optim.step() |
|
self._alpha = max(0, self._alpha) |
|
|
|
loss_dict['total_loss'] = sum(loss_dict.values()) |
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr_q': self._optimizer_q.defaults['lr'], |
|
'cur_lr_p': self._optimizer_policy.defaults['lr'], |
|
'priority': td_error_per_sample.abs().tolist(), |
|
'td_error': td_error_per_sample.detach().mean().item(), |
|
'alpha': self._alpha.item(), |
|
'target_q_value': target_q_value.detach().mean().item(), |
|
'transformed_log_prob': log_prob.mean().item(), |
|
**loss_dict |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model, target_model and optimizers. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. |
|
""" |
|
ret = { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer_q': self._optimizer_q.state_dict(), |
|
'optimizer_policy': self._optimizer_policy.state_dict(), |
|
} |
|
if self._auto_alpha: |
|
ret.update({'optimizer_alpha': self._alpha_optim.state_dict()}) |
|
return ret |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer_q.load_state_dict(state_dict['optimizer_q']) |
|
self._optimizer_policy.load_state_dict(state_dict['optimizer_policy']) |
|
if self._auto_alpha: |
|
self._alpha_optim.load_state_dict(state_dict['optimizer_alpha']) |
|
|
|
def _init_collect(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the collect mode of policy, including related attributes and modules. For SAC, it contains the \ |
|
collect_model other algorithm-specific arguments such as unroll_len. \ |
|
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ |
|
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._collect_model = model_wrap(self._model, wrapper_name='base') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ |
|
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ |
|
data, such as the action to interact with the envs. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ |
|
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \ |
|
dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
``logit`` in SAC means the mu and sigma of Gaussioan distribution. Here we use this name for consistency. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
(mu, sigma) = self._collect_model.forward(data, mode='compute_actor')['logit'] |
|
dist = Independent(Normal(mu, sigma), 1) |
|
action = torch.tanh(dist.rsample()) |
|
output = {'logit': (mu, sigma), 'action': action} |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], |
|
timestep: namedtuple) -> Dict[str, torch.Tensor]: |
|
""" |
|
Overview: |
|
Process and pack one timestep transition data into a dict, which can be directly used for training and \ |
|
saved in replay buffer. For continuous SAC, it contains obs, next_obs, action, reward, done. The logit \ |
|
will be also added when ``collector_logit`` is True. |
|
Arguments: |
|
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. |
|
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ |
|
as input. For continuous SAC, it contains the action and the logit (mu and sigma) of the action. |
|
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ |
|
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ |
|
reward, done, info, etc. |
|
Returns: |
|
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. |
|
""" |
|
if self._cfg.collect.collector_logit: |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'logit': policy_output['logit'], |
|
'action': policy_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
else: |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'action': policy_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. In continuous SAC, a train sample is a processed transition \ |
|
(unroll_len=1). |
|
Arguments: |
|
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ |
|
the same format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ |
|
as input transitions, but may contain more data for training. |
|
""" |
|
return get_train_sample(transitions, self._unroll_len) |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For SAC, it contains the \ |
|
eval model, which is equipped with ``base`` model wrapper to ensure compability. |
|
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='base') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ |
|
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ |
|
action to interact with the envs. |
|
Arguments: |
|
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
``logit`` in SAC means the mu and sigma of Gaussioan distribution. Here we use this name for consistency. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
(mu, sigma) = self._eval_model.forward(data, mode='compute_actor')['logit'] |
|
action = torch.tanh(mu) |
|
output = {'action': action} |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
twin_critic = ['twin_critic_loss'] if self._twin_critic else [] |
|
alpha_loss = ['alpha_loss'] if self._auto_alpha else [] |
|
return [ |
|
'value_loss' |
|
'alpha_loss', |
|
'policy_loss', |
|
'critic_loss', |
|
'cur_lr_q', |
|
'cur_lr_p', |
|
'target_q_value', |
|
'alpha', |
|
'td_error', |
|
'transformed_log_prob', |
|
] + twin_critic + alpha_loss |
|
|
|
|
|
@POLICY_REGISTRY.register('sqil_sac') |
|
class SQILSACPolicy(SACPolicy): |
|
""" |
|
Overview: |
|
Policy class of continuous SAC algorithm with SQIL extension. |
|
SAC paper link: https://arxiv.org/pdf/1801.01290.pdf |
|
SQIL paper link: https://arxiv.org/abs/1905.11108 |
|
""" |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \ |
|
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \ |
|
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
self._twin_critic = self._cfg.model.twin_critic |
|
|
|
|
|
init_w = self._cfg.learn.init_w |
|
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w) |
|
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w) |
|
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w) |
|
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w) |
|
|
|
self._optimizer_q = Adam( |
|
self._model.critic.parameters(), |
|
lr=self._cfg.learn.learning_rate_q, |
|
) |
|
self._optimizer_policy = Adam( |
|
self._model.actor.parameters(), |
|
lr=self._cfg.learn.learning_rate_policy, |
|
) |
|
|
|
|
|
self._gamma = self._cfg.learn.discount_factor |
|
if self._cfg.learn.auto_alpha: |
|
if self._cfg.learn.target_entropy is None: |
|
assert 'action_shape' in self._cfg.model, "SQILSACPolicy need network model with action_shape variable" |
|
self._target_entropy = -np.prod(self._cfg.model.action_shape) |
|
else: |
|
self._target_entropy = self._cfg.learn.target_entropy |
|
if self._cfg.learn.log_space: |
|
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha])) |
|
self._log_alpha = self._log_alpha.to(self._device).requires_grad_() |
|
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha) |
|
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad |
|
self._alpha = self._log_alpha.detach().exp() |
|
self._auto_alpha = True |
|
self._log_space = True |
|
else: |
|
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_() |
|
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha) |
|
self._auto_alpha = True |
|
self._log_space = False |
|
else: |
|
self._alpha = torch.tensor( |
|
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32 |
|
) |
|
self._auto_alpha = False |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_theta} |
|
) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
|
|
self._monitor_cos = True |
|
self._monitor_entropy = True |
|
|
|
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, action, priority. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
For SQIL + SAC, input data is composed of two parts with the same size: agent data and expert data. \ |
|
Both of them are relabelled with new reward according to SQIL algorithm. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``. |
|
""" |
|
loss_dict = {} |
|
if self._monitor_cos: |
|
agent_data = default_preprocess_learn( |
|
data[0:len(data) // 2], |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=False |
|
) |
|
|
|
expert_data = default_preprocess_learn( |
|
data[len(data) // 2:], |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=False |
|
) |
|
if self._cuda: |
|
agent_data = to_device(agent_data, self._device) |
|
expert_data = to_device(expert_data, self._device) |
|
|
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=False |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
obs = data['obs'] |
|
next_obs = data['next_obs'] |
|
reward = data['reward'] |
|
done = data['done'] |
|
|
|
|
|
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] |
|
|
|
|
|
with torch.no_grad(): |
|
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit'] |
|
dist = Independent(Normal(mu, sigma), 1) |
|
pred = dist.rsample() |
|
next_action = torch.tanh(pred) |
|
y = 1 - next_action.pow(2) + 1e-6 |
|
|
|
next_log_prob = dist.log_prob(pred).unsqueeze(-1) |
|
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True) |
|
|
|
next_data = {'obs': next_obs, 'action': next_action} |
|
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value'] |
|
|
|
if self._twin_critic: |
|
|
|
target_q_value = torch.min(target_q_value[0], |
|
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1) |
|
else: |
|
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1) |
|
|
|
|
|
if self._twin_critic: |
|
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight']) |
|
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma) |
|
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight']) |
|
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma) |
|
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2 |
|
else: |
|
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight']) |
|
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma) |
|
|
|
|
|
self._optimizer_q.zero_grad() |
|
if self._twin_critic: |
|
(loss_dict['critic_loss'] + loss_dict['twin_critic_loss']).backward() |
|
else: |
|
loss_dict['critic_loss'].backward() |
|
self._optimizer_q.step() |
|
|
|
|
|
if self._monitor_cos: |
|
|
|
(mu, sigma) = self._learn_model.forward(agent_data['obs'], mode='compute_actor')['logit'] |
|
dist = Independent(Normal(mu, sigma), 1) |
|
pred = dist.rsample() |
|
action = torch.tanh(pred) |
|
y = 1 - action.pow(2) + 1e-6 |
|
|
|
agent_log_prob = dist.log_prob(pred).unsqueeze(-1) |
|
agent_log_prob = agent_log_prob - torch.log(y).sum(-1, keepdim=True) |
|
|
|
eval_data = {'obs': agent_data['obs'], 'action': action} |
|
agent_new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] |
|
if self._twin_critic: |
|
agent_new_q_value = torch.min(agent_new_q_value[0], agent_new_q_value[1]) |
|
|
|
(mu, sigma) = self._learn_model.forward(expert_data['obs'], mode='compute_actor')['logit'] |
|
dist = Independent(Normal(mu, sigma), 1) |
|
pred = dist.rsample() |
|
action = torch.tanh(pred) |
|
y = 1 - action.pow(2) + 1e-6 |
|
|
|
expert_log_prob = dist.log_prob(pred).unsqueeze(-1) |
|
expert_log_prob = expert_log_prob - torch.log(y).sum(-1, keepdim=True) |
|
|
|
eval_data = {'obs': expert_data['obs'], 'action': action} |
|
expert_new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] |
|
if self._twin_critic: |
|
expert_new_q_value = torch.min(expert_new_q_value[0], expert_new_q_value[1]) |
|
|
|
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit'] |
|
dist = Independent(Normal(mu, sigma), 1) |
|
|
|
if self._monitor_entropy: |
|
dist_entropy = dist.entropy() |
|
entropy = dist_entropy.mean() |
|
|
|
pred = dist.rsample() |
|
action = torch.tanh(pred) |
|
y = 1 - action.pow(2) + 1e-6 |
|
|
|
log_prob = dist.log_prob(pred).unsqueeze(-1) |
|
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True) |
|
|
|
eval_data = {'obs': obs, 'action': action} |
|
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value'] |
|
if self._twin_critic: |
|
new_q_value = torch.min(new_q_value[0], new_q_value[1]) |
|
|
|
|
|
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean() |
|
loss_dict['policy_loss'] = policy_loss |
|
|
|
|
|
if self._monitor_cos: |
|
agent_policy_loss = (self._alpha * agent_log_prob - agent_new_q_value.unsqueeze(-1)).mean() |
|
expert_policy_loss = (self._alpha * expert_log_prob - expert_new_q_value.unsqueeze(-1)).mean() |
|
loss_dict['agent_policy_loss'] = agent_policy_loss |
|
loss_dict['expert_policy_loss'] = expert_policy_loss |
|
self._optimizer_policy.zero_grad() |
|
loss_dict['agent_policy_loss'].backward() |
|
agent_grad = (list(list(self._learn_model.actor.children())[-1].children())[-1].weight.grad).mean() |
|
self._optimizer_policy.zero_grad() |
|
loss_dict['expert_policy_loss'].backward() |
|
expert_grad = (list(list(self._learn_model.actor.children())[-1].children())[-1].weight.grad).mean() |
|
cos = nn.CosineSimilarity(dim=0) |
|
cos_similarity = cos(agent_grad, expert_grad) |
|
self._optimizer_policy.zero_grad() |
|
loss_dict['policy_loss'].backward() |
|
self._optimizer_policy.step() |
|
|
|
|
|
if self._auto_alpha: |
|
if self._log_space: |
|
log_prob = log_prob + self._target_entropy |
|
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean() |
|
|
|
self._alpha_optim.zero_grad() |
|
loss_dict['alpha_loss'].backward() |
|
self._alpha_optim.step() |
|
self._alpha = self._log_alpha.detach().exp() |
|
else: |
|
log_prob = log_prob + self._target_entropy |
|
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean() |
|
|
|
self._alpha_optim.zero_grad() |
|
loss_dict['alpha_loss'].backward() |
|
self._alpha_optim.step() |
|
self._alpha = max(0, self._alpha) |
|
|
|
loss_dict['total_loss'] = sum(loss_dict.values()) |
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
var_monitor = { |
|
'cur_lr_q': self._optimizer_q.defaults['lr'], |
|
'cur_lr_p': self._optimizer_policy.defaults['lr'], |
|
'priority': td_error_per_sample.abs().tolist(), |
|
'td_error': td_error_per_sample.detach().mean().item(), |
|
'agent_td_error': td_error_per_sample.detach().chunk(2, dim=0)[0].mean().item(), |
|
'expert_td_error': td_error_per_sample.detach().chunk(2, dim=0)[1].mean().item(), |
|
'alpha': self._alpha.item(), |
|
'target_q_value': target_q_value.detach().mean().item(), |
|
'mu': mu.detach().mean().item(), |
|
'sigma': sigma.detach().mean().item(), |
|
'q_value0': new_q_value[0].detach().mean().item(), |
|
'q_value1': new_q_value[1].detach().mean().item(), |
|
**loss_dict, |
|
} |
|
if self._monitor_cos: |
|
var_monitor['cos_similarity'] = cos_similarity.item() |
|
if self._monitor_entropy: |
|
var_monitor['entropy'] = entropy.item() |
|
return var_monitor |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
twin_critic = ['twin_critic_loss'] if self._twin_critic else [] |
|
alpha_loss = ['alpha_loss'] if self._auto_alpha else [] |
|
cos_similarity = ['cos_similarity'] if self._monitor_cos else [] |
|
entropy = ['entropy'] if self._monitor_entropy else [] |
|
return [ |
|
'value_loss' |
|
'alpha_loss', |
|
'policy_loss', |
|
'critic_loss', |
|
'cur_lr_q', |
|
'cur_lr_p', |
|
'target_q_value', |
|
'alpha', |
|
'td_error', |
|
'agent_td_error', |
|
'expert_td_error', |
|
'mu', |
|
'sigma', |
|
'q_value0', |
|
'q_value1', |
|
] + twin_critic + alpha_loss + cos_similarity + entropy |
|
|