zjowowen's picture
init space
079c32c
raw
history blame
15 kB
from typing import Optional, Union, List, Tuple, Dict
import math
import torch
import torch.nn as nn
import treetensor.torch as ttorch
import ding
from ding.torch_utils.network.normalization import build_normalization
if ding.enable_hpc_rl:
from hpc_rll.torch_utils.network.rnn import LSTM as HPCLSTM
else:
HPCLSTM = None
def is_sequence(data):
"""
Overview:
Determines if the input data is of type list or tuple.
Arguments:
- data: The input data to be checked.
Returns:
- boolean: True if the input is a list or a tuple, False otherwise.
"""
return isinstance(data, list) or isinstance(data, tuple)
def sequence_mask(lengths: torch.Tensor, max_len: Optional[int] = None) -> torch.BoolTensor:
"""
Overview:
Generates a boolean mask for a batch of sequences with differing lengths.
Arguments:
- lengths (:obj:`torch.Tensor`): A tensor with the lengths of each sequence. Shape could be (n, 1) or (n).
- max_len (:obj:`int`, optional): The padding size. If max_len is None, the padding size is the max length of \
sequences.
Returns:
- masks (:obj:`torch.BoolTensor`): A boolean mask tensor. The mask has the same device as lengths.
"""
if len(lengths.shape) == 1:
lengths = lengths.unsqueeze(dim=1)
bz = lengths.numel()
if max_len is None:
max_len = lengths.max()
else:
max_len = min(max_len, lengths.max())
return torch.arange(0, max_len).type_as(lengths).repeat(bz, 1).lt(lengths).to(lengths.device)
class LSTMForwardWrapper(object):
"""
Overview:
Class providing methods to use before and after the LSTM `forward` method.
Wraps the LSTM `forward` method.
Interfaces:
``_before_forward``, ``_after_forward``
"""
def _before_forward(self, inputs: torch.Tensor, prev_state: Union[None, List[Dict]]) -> torch.Tensor:
"""
Overview:
Preprocesses the inputs and previous states before the LSTM `forward` method.
Arguments:
- inputs (:obj:`torch.Tensor`): Input vector of the LSTM cell. Shape: [seq_len, batch_size, input_size]
- prev_state (:obj:`Union[None, List[Dict]]`): Previous state tensor. Shape: [num_directions*num_layers, \
batch_size, hidden_size]. If None, prv_state will be initialized to all zeros.
Returns:
- prev_state (:obj:`torch.Tensor`): Preprocessed previous state for the LSTM batch.
"""
assert hasattr(self, 'num_layers')
assert hasattr(self, 'hidden_size')
seq_len, batch_size = inputs.shape[:2]
if prev_state is None:
num_directions = 1
zeros = torch.zeros(
num_directions * self.num_layers,
batch_size,
self.hidden_size,
dtype=inputs.dtype,
device=inputs.device
)
prev_state = (zeros, zeros)
elif is_sequence(prev_state):
if len(prev_state) != batch_size:
raise RuntimeError(
"prev_state number is not equal to batch_size: {}/{}".format(len(prev_state), batch_size)
)
num_directions = 1
zeros = torch.zeros(
num_directions * self.num_layers, 1, self.hidden_size, dtype=inputs.dtype, device=inputs.device
)
state = []
for prev in prev_state:
if prev is None:
state.append([zeros, zeros])
else:
if isinstance(prev, (Dict, ttorch.Tensor)):
state.append([v for v in prev.values()])
else:
state.append(prev)
state = list(zip(*state))
prev_state = [torch.cat(t, dim=1) for t in state]
elif isinstance(prev_state, dict):
prev_state = list(prev_state.values())
else:
raise TypeError("not support prev_state type: {}".format(type(prev_state)))
return prev_state
def _after_forward(self,
next_state: Tuple[torch.Tensor],
list_next_state: bool = False) -> Union[List[Dict], Dict[str, torch.Tensor]]:
"""
Overview:
Post-processes the next_state after the LSTM `forward` method.
Arguments:
- next_state (:obj:`Tuple[torch.Tensor]`): Tuple containing the next state (h, c).
- list_next_state (:obj:`bool`, optional): Determines the format of the returned next_state. \
If True, returns next_state in list format. Default is False.
Returns:
- next_state(:obj:`Union[List[Dict], Dict[str, torch.Tensor]]`): The post-processed next_state.
"""
if list_next_state:
h, c = next_state
batch_size = h.shape[1]
next_state = [torch.chunk(h, batch_size, dim=1), torch.chunk(c, batch_size, dim=1)]
next_state = list(zip(*next_state))
next_state = [{k: v for k, v in zip(['h', 'c'], item)} for item in next_state]
else:
next_state = {k: v for k, v in zip(['h', 'c'], next_state)}
return next_state
class LSTM(nn.Module, LSTMForwardWrapper):
"""
Overview:
Implementation of an LSTM cell with Layer Normalization (LN).
Interfaces:
``__init__``, ``forward``
.. note::
For a primer on LSTM, refer to https://zhuanlan.zhihu.com/p/32085405.
"""
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int,
norm_type: Optional[str] = None,
dropout: float = 0.
) -> None:
"""
Overview:
Initialize LSTM cell parameters.
Arguments:
- input_size (:obj:`int`): Size of the input vector.
- hidden_size (:obj:`int`): Size of the hidden state vector.
- num_layers (:obj:`int`): Number of LSTM layers.
- norm_type (:obj:`Optional[str]`): Normalization type, default is None.
- dropout (:obj:`float`): Dropout rate, default is 0.
"""
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
norm_func = build_normalization(norm_type)
self.norm = nn.ModuleList([norm_func(hidden_size * 4) for _ in range(2 * num_layers)])
self.wx = nn.ParameterList()
self.wh = nn.ParameterList()
dims = [input_size] + [hidden_size] * num_layers
for l in range(num_layers):
self.wx.append(nn.Parameter(torch.zeros(dims[l], dims[l + 1] * 4)))
self.wh.append(nn.Parameter(torch.zeros(hidden_size, hidden_size * 4)))
self.bias = nn.Parameter(torch.zeros(num_layers, hidden_size * 4))
self.use_dropout = dropout > 0.
if self.use_dropout:
self.dropout = nn.Dropout(dropout)
self._init()
def _init(self):
"""
Overview:
Initialize the parameters of the LSTM cell.
"""
gain = math.sqrt(1. / self.hidden_size)
for l in range(self.num_layers):
torch.nn.init.uniform_(self.wx[l], -gain, gain)
torch.nn.init.uniform_(self.wh[l], -gain, gain)
if self.bias is not None:
torch.nn.init.uniform_(self.bias[l], -gain, gain)
def forward(self,
inputs: torch.Tensor,
prev_state: torch.Tensor,
list_next_state: bool = True) -> Tuple[torch.Tensor, Union[torch.Tensor, list]]:
"""
Overview:
Compute output and next state given previous state and input.
Arguments:
- inputs (:obj:`torch.Tensor`): Input vector of cell, size [seq_len, batch_size, input_size].
- prev_state (:obj:`torch.Tensor`): Previous state, \
size [num_directions*num_layers, batch_size, hidden_size].
- list_next_state (:obj:`bool`): Whether to return next_state in list format, default is True.
Returns:
- x (:obj:`torch.Tensor`): Output from LSTM.
- next_state (:obj:`Union[torch.Tensor, list]`): Hidden state from LSTM.
"""
seq_len, batch_size = inputs.shape[:2]
prev_state = self._before_forward(inputs, prev_state)
H, C = prev_state
x = inputs
next_state = []
for l in range(self.num_layers):
h, c = H[l], C[l]
new_x = []
for s in range(seq_len):
gate = self.norm[l * 2](torch.matmul(x[s], self.wx[l])
) + self.norm[l * 2 + 1](torch.matmul(h, self.wh[l]))
if self.bias is not None:
gate += self.bias[l]
gate = list(torch.chunk(gate, 4, dim=1))
i, f, o, u = gate
i = torch.sigmoid(i)
f = torch.sigmoid(f)
o = torch.sigmoid(o)
u = torch.tanh(u)
c = f * c + i * u
h = o * torch.tanh(c)
new_x.append(h)
next_state.append((h, c))
x = torch.stack(new_x, dim=0)
if self.use_dropout and l != self.num_layers - 1:
x = self.dropout(x)
next_state = [torch.stack(t, dim=0) for t in zip(*next_state)]
next_state = self._after_forward(next_state, list_next_state)
return x, next_state
class PytorchLSTM(nn.LSTM, LSTMForwardWrapper):
"""
Overview:
Wrapper class for PyTorch's nn.LSTM, formats the input and output. For more details on nn.LSTM,
refer to https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM
Interfaces:
``forward``
"""
def forward(self,
inputs: torch.Tensor,
prev_state: torch.Tensor,
list_next_state: bool = True) -> Tuple[torch.Tensor, Union[torch.Tensor, list]]:
"""
Overview:
Executes nn.LSTM.forward with preprocessed input.
Arguments:
- inputs (:obj:`torch.Tensor`): Input vector of cell, size [seq_len, batch_size, input_size].
- prev_state (:obj:`torch.Tensor`): Previous state, size [num_directions*num_layers, batch_size, \
hidden_size].
- list_next_state (:obj:`bool`): Whether to return next_state in list format, default is True.
Returns:
- output (:obj:`torch.Tensor`): Output from LSTM.
- next_state (:obj:`Union[torch.Tensor, list]`): Hidden state from LSTM.
"""
prev_state = self._before_forward(inputs, prev_state)
output, next_state = nn.LSTM.forward(self, inputs, prev_state)
next_state = self._after_forward(next_state, list_next_state)
return output, next_state
class GRU(nn.GRUCell, LSTMForwardWrapper):
"""
Overview:
This class extends the `torch.nn.GRUCell` and `LSTMForwardWrapper` classes, and formats inputs and outputs
accordingly.
Interfaces:
``__init__``, ``forward``
Properties:
hidden_size, num_layers
.. note::
For further details, refer to the official PyTorch documentation:
<https://pytorch.org/docs/stable/generated/torch.nn.GRU.html#torch.nn.GRU>
"""
def __init__(self, input_size: int, hidden_size: int, num_layers: int) -> None:
"""
Overview:
Initialize the GRU class with input size, hidden size, and number of layers.
Arguments:
- input_size (:obj:`int`): The size of the input vector.
- hidden_size (:obj:`int`): The size of the hidden state vector.
- num_layers (:obj:`int`): The number of GRU layers.
"""
super(GRU, self).__init__(input_size, hidden_size)
self.hidden_size = hidden_size
self.num_layers = num_layers
def forward(self,
inputs: torch.Tensor,
prev_state: Optional[torch.Tensor] = None,
list_next_state: bool = True) -> Tuple[torch.Tensor, Union[torch.Tensor, List]]:
"""
Overview:
Wrap the `nn.GRU.forward` method.
Arguments:
- inputs (:obj:`torch.Tensor`): Input vector of cell, tensor of size [seq_len, batch_size, input_size].
- prev_state (:obj:`Optional[torch.Tensor]`): None or tensor of \
size [num_directions*num_layers, batch_size, hidden_size].
- list_next_state (:obj:`bool`): Whether to return next_state in list format (default is True).
Returns:
- output (:obj:`torch.Tensor`): Output from GRU.
- next_state (:obj:`torch.Tensor` or :obj:`list`): Hidden state from GRU.
"""
# for compatibility
prev_state, _ = self._before_forward(inputs, prev_state)
inputs, prev_state = inputs.squeeze(0), prev_state.squeeze(0)
next_state = nn.GRUCell.forward(self, inputs, prev_state)
next_state = next_state.unsqueeze(0)
x = next_state
# for compatibility
next_state = self._after_forward([next_state, next_state.clone()], list_next_state)
return x, next_state
def get_lstm(
lstm_type: str,
input_size: int,
hidden_size: int,
num_layers: int = 1,
norm_type: str = 'LN',
dropout: float = 0.,
seq_len: Optional[int] = None,
batch_size: Optional[int] = None
) -> Union[LSTM, PytorchLSTM]:
"""
Overview:
Build and return the corresponding LSTM cell based on the provided parameters.
Arguments:
- lstm_type (:obj:`str`): Version of RNN cell. Supported options are ['normal', 'pytorch', 'hpc', 'gru'].
- input_size (:obj:`int`): Size of the input vector.
- hidden_size (:obj:`int`): Size of the hidden state vector.
- num_layers (:obj:`int`): Number of LSTM layers (default is 1).
- norm_type (:obj:`str`): Type of normalization (default is 'LN').
- dropout (:obj:`float`): Dropout rate (default is 0.0).
- seq_len (:obj:`Optional[int]`): Sequence length (default is None).
- batch_size (:obj:`Optional[int]`): Batch size (default is None).
Returns:
- lstm (:obj:`Union[LSTM, PytorchLSTM]`): The corresponding LSTM cell.
"""
assert lstm_type in ['normal', 'pytorch', 'hpc', 'gru']
if lstm_type == 'normal':
return LSTM(input_size, hidden_size, num_layers, norm_type, dropout=dropout)
elif lstm_type == 'pytorch':
return PytorchLSTM(input_size, hidden_size, num_layers, dropout=dropout)
elif lstm_type == 'hpc':
return HPCLSTM(seq_len, batch_size, input_size, hidden_size, num_layers, norm_type, dropout).cuda()
elif lstm_type == 'gru':
assert num_layers == 1
return GRU(input_size, hidden_size, num_layers)