zjowowen's picture
init space
079c32c
raw
history blame
22.7 kB
from functools import partial
from ditk import logging
import itertools
import copy
import numpy as np
import multiprocessing
import torch
import torch.nn as nn
from ding.utils import WORLD_MODEL_REGISTRY
from ding.utils.data import default_collate
from ding.torch_utils import unsqueeze_repeat
from ding.world_model.base_world_model import HybridWorldModel
from ding.world_model.model.ensemble import EnsembleModel, StandardScaler
#======================= Helper functions =======================
# tree_query = lambda datapoint: tree.query(datapoint, k=k+1)[1][1:]
def tree_query(datapoint, tree, k):
return tree.query(datapoint, k=k + 1)[1][1:]
def get_neighbor_index(data, k, serial=False):
"""
data: [B, N]
k: int
ret: [B, k]
"""
try:
from scipy.spatial import KDTree
except ImportError:
import sys
logging.warning("Please install scipy first, such as `pip3 install scipy`.")
sys.exit(1)
data = data.cpu().numpy()
tree = KDTree(data)
if serial:
nn_index = [torch.from_numpy(np.array(tree_query(d, tree, k))) for d in data]
nn_index = torch.stack(nn_index).long()
else:
# TODO: speed up multiprocessing
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
fn = partial(tree_query, tree=tree, k=k)
nn_index = torch.from_numpy(np.array(list(pool.map(fn, data)), dtype=np.int32)).to(torch.long)
pool.close()
return nn_index
def get_batch_jacobian(net, x, noutputs): # x: b, in dim, noutpouts: out dim
x = x.unsqueeze(1) # b, 1 ,in_dim
n = x.size()[0]
x = x.repeat(1, noutputs, 1) # b, out_dim, in_dim
x.requires_grad_(True)
y = net(x)
upstream_gradient = torch.eye(noutputs).reshape(1, noutputs, noutputs).repeat(n, 1, 1).to(x.device)
re = torch.autograd.grad(y, x, upstream_gradient, create_graph=True)[0]
return re
class EnsembleGradientModel(EnsembleModel):
def train(self, loss, loss_reg, reg):
self.optimizer.zero_grad()
loss += 0.01 * torch.sum(self.max_logvar) - 0.01 * torch.sum(self.min_logvar)
loss += reg * loss_reg
if self.use_decay:
loss += self.get_decay_loss()
loss.backward()
self.optimizer.step()
# TODO: derive from MBPO instead of implementing from scratch
@WORLD_MODEL_REGISTRY.register('ddppo')
class DDPPOWorldMode(HybridWorldModel, nn.Module):
"""rollout model + gradient model"""
config = dict(
model=dict(
ensemble_size=7,
elite_size=5,
state_size=None, # has to be specified
action_size=None, # has to be specified
reward_size=1,
hidden_size=200,
use_decay=False,
batch_size=256,
holdout_ratio=0.2,
max_epochs_since_update=5,
deterministic_rollout=True,
# parameters for DDPPO
gradient_model=True,
k=3,
reg=1,
neighbor_pool_size=10000,
train_freq_gradient_model=250
),
)
def __init__(self, cfg, env, tb_logger):
HybridWorldModel.__init__(self, cfg, env, tb_logger)
nn.Module.__init__(self)
cfg = cfg.model
self.ensemble_size = cfg.ensemble_size
self.elite_size = cfg.elite_size
self.state_size = cfg.state_size
self.action_size = cfg.action_size
self.reward_size = cfg.reward_size
self.hidden_size = cfg.hidden_size
self.use_decay = cfg.use_decay
self.batch_size = cfg.batch_size
self.holdout_ratio = cfg.holdout_ratio
self.max_epochs_since_update = cfg.max_epochs_since_update
self.deterministic_rollout = cfg.deterministic_rollout
# parameters for DDPPO
self.gradient_model = cfg.gradient_model
self.k = cfg.k
self.reg = cfg.reg
self.neighbor_pool_size = cfg.neighbor_pool_size
self.train_freq_gradient_model = cfg.train_freq_gradient_model
self.rollout_model = EnsembleModel(
self.state_size,
self.action_size,
self.reward_size,
self.ensemble_size,
self.hidden_size,
use_decay=self.use_decay
)
self.scaler = StandardScaler(self.state_size + self.action_size)
self.ensemble_mse_losses = []
self.model_variances = []
self.elite_model_idxes = []
if self.gradient_model:
self.gradient_model = EnsembleGradientModel(
self.state_size,
self.action_size,
self.reward_size,
self.ensemble_size,
self.hidden_size,
use_decay=self.use_decay
)
self.elite_model_idxes_gradient_model = []
self.last_train_step_gradient_model = 0
self.serial_calc_nn = False
if self._cuda:
self.cuda()
def step(self, obs, act, batch_size=8192):
class Predict(torch.autograd.Function):
# TODO: align rollout_model elites with gradient_model elites
# use different model for forward and backward
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
mean, var = self.rollout_model(x, ret_log_var=False)
return torch.cat([mean, var], dim=-1)
@staticmethod
def backward(ctx, grad_out):
x, = ctx.saved_tensors
with torch.enable_grad():
x = x.detach()
x.requires_grad_(True)
mean, var = self.gradient_model(x, ret_log_var=False)
y = torch.cat([mean, var], dim=-1)
return torch.autograd.grad(y, x, grad_outputs=grad_out, create_graph=True)
if len(act.shape) == 1:
act = act.unsqueeze(1)
if self._cuda:
obs = obs.cuda()
act = act.cuda()
inputs = torch.cat([obs, act], dim=1)
inputs = self.scaler.transform(inputs)
# predict
ensemble_mean, ensemble_var = [], []
for i in range(0, inputs.shape[0], batch_size):
input = unsqueeze_repeat(inputs[i:i + batch_size], self.ensemble_size)
if not torch.is_grad_enabled() or not self.gradient_model:
b_mean, b_var = self.rollout_model(input, ret_log_var=False)
else:
# use gradient model to compute gradients during backward pass
output = Predict.apply(input)
b_mean, b_var = output.chunk(2, dim=2)
ensemble_mean.append(b_mean)
ensemble_var.append(b_var)
ensemble_mean = torch.cat(ensemble_mean, 1)
ensemble_var = torch.cat(ensemble_var, 1)
ensemble_mean[:, :, 1:] += obs.unsqueeze(0)
ensemble_std = ensemble_var.sqrt()
# sample from the predicted distribution
if self.deterministic_rollout:
ensemble_sample = ensemble_mean
else:
ensemble_sample = ensemble_mean + torch.randn_like(ensemble_mean).to(ensemble_mean) * ensemble_std
# sample from ensemble
model_idxes = torch.from_numpy(np.random.choice(self.elite_model_idxes, size=len(obs))).to(inputs.device)
batch_idxes = torch.arange(len(obs)).to(inputs.device)
sample = ensemble_sample[model_idxes, batch_idxes]
rewards, next_obs = sample[:, 0], sample[:, 1:]
return rewards, next_obs, self.env.termination_fn(next_obs)
def eval(self, env_buffer, envstep, train_iter):
data = env_buffer.sample(self.eval_freq, train_iter)
data = default_collate(data)
data['done'] = data['done'].float()
data['weight'] = data.get('weight', None)
obs = data['obs']
action = data['action']
reward = data['reward']
next_obs = data['next_obs']
if len(reward.shape) == 1:
reward = reward.unsqueeze(1)
if len(action.shape) == 1:
action = action.unsqueeze(1)
# build eval samples
inputs = torch.cat([obs, action], dim=1)
labels = torch.cat([reward, next_obs - obs], dim=1)
if self._cuda:
inputs = inputs.cuda()
labels = labels.cuda()
# normalize
inputs = self.scaler.transform(inputs)
# repeat for ensemble
inputs = unsqueeze_repeat(inputs, self.ensemble_size)
labels = unsqueeze_repeat(labels, self.ensemble_size)
# eval
with torch.no_grad():
mean, logvar = self.rollout_model(inputs, ret_log_var=True)
loss, mse_loss = self.rollout_model.loss(mean, logvar, labels)
ensemble_mse_loss = torch.pow(mean.mean(0) - labels[0], 2)
model_variance = mean.var(0)
self.tb_logger.add_scalar('env_model_step/eval_mse_loss', mse_loss.mean().item(), envstep)
self.tb_logger.add_scalar('env_model_step/eval_ensemble_mse_loss', ensemble_mse_loss.mean().item(), envstep)
self.tb_logger.add_scalar('env_model_step/eval_model_variances', model_variance.mean().item(), envstep)
self.last_eval_step = envstep
def train(self, env_buffer, envstep, train_iter):
def train_sample(data) -> tuple:
data = default_collate(data)
data['done'] = data['done'].float()
data['weight'] = data.get('weight', None)
obs = data['obs']
action = data['action']
reward = data['reward']
next_obs = data['next_obs']
if len(reward.shape) == 1:
reward = reward.unsqueeze(1)
if len(action.shape) == 1:
action = action.unsqueeze(1)
# build train samples
inputs = torch.cat([obs, action], dim=1)
labels = torch.cat([reward, next_obs - obs], dim=1)
if self._cuda:
inputs = inputs.cuda()
labels = labels.cuda()
return inputs, labels
logvar = dict()
data = env_buffer.sample(env_buffer.count(), train_iter)
inputs, labels = train_sample(data)
logvar.update(self._train_rollout_model(inputs, labels))
if self.gradient_model:
# update neighbor pool
if (envstep - self.last_train_step_gradient_model) >= self.train_freq_gradient_model:
n = min(env_buffer.count(), self.neighbor_pool_size)
self.neighbor_pool = env_buffer.sample(n, train_iter, sample_range=slice(-n, None))
inputs_reg, labels_reg = train_sample(self.neighbor_pool)
logvar.update(self._train_gradient_model(inputs, labels, inputs_reg, labels_reg))
self.last_train_step_gradient_model = envstep
self.last_train_step = envstep
# log
if self.tb_logger is not None:
for k, v in logvar.items():
self.tb_logger.add_scalar('env_model_step/' + k, v, envstep)
def _train_rollout_model(self, inputs, labels):
#split
num_holdout = int(inputs.shape[0] * self.holdout_ratio)
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:]
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout]
#normalize
self.scaler.fit(train_inputs)
train_inputs = self.scaler.transform(train_inputs)
holdout_inputs = self.scaler.transform(holdout_inputs)
#repeat for ensemble
holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size)
holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size)
self._epochs_since_update = 0
self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)}
self._save_states()
for epoch in itertools.count():
train_idx = torch.stack([torch.randperm(train_inputs.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs.device)
self.mse_loss = []
for start_pos in range(0, train_inputs.shape[0], self.batch_size):
idx = train_idx[:, start_pos:start_pos + self.batch_size]
train_input = train_inputs[idx]
train_label = train_labels[idx]
mean, logvar = self.rollout_model(train_input, ret_log_var=True)
loss, mse_loss = self.rollout_model.loss(mean, logvar, train_label)
self.rollout_model.train(loss)
self.mse_loss.append(mse_loss.mean().item())
self.mse_loss = sum(self.mse_loss) / len(self.mse_loss)
with torch.no_grad():
holdout_mean, holdout_logvar = self.rollout_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.rollout_model.loss(holdout_mean, holdout_logvar, holdout_labels)
self.curr_holdout_mse_loss = holdout_mse_loss.mean().item()
break_train = self._save_best(epoch, holdout_mse_loss)
if break_train:
break
self._load_states()
with torch.no_grad():
holdout_mean, holdout_logvar = self.rollout_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.rollout_model.loss(holdout_mean, holdout_logvar, holdout_labels)
sorted_loss, sorted_loss_idx = holdout_mse_loss.sort()
sorted_loss = sorted_loss.detach().cpu().numpy().tolist()
sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist()
self.elite_model_idxes = sorted_loss_idx[:self.elite_size]
self.top_holdout_mse_loss = sorted_loss[0]
self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2]
self.bottom_holdout_mse_loss = sorted_loss[-1]
self.best_holdout_mse_loss = holdout_mse_loss.mean().item()
return {
'rollout_model/mse_loss': self.mse_loss,
'rollout_model/curr_holdout_mse_loss': self.curr_holdout_mse_loss,
'rollout_model/best_holdout_mse_loss': self.best_holdout_mse_loss,
'rollout_model/top_holdout_mse_loss': self.top_holdout_mse_loss,
'rollout_model/middle_holdout_mse_loss': self.middle_holdout_mse_loss,
'rollout_model/bottom_holdout_mse_loss': self.bottom_holdout_mse_loss,
}
def _get_jacobian(self, model, train_input_reg):
"""
train_input_reg: [ensemble_size, B, state_size+action_size]
ret: [ensemble_size, B, state_size+reward_size, state_size+action_size]
"""
def func(x):
x = x.view(self.ensemble_size, -1, self.state_size + self.action_size)
state = x[:, :, :self.state_size]
x = self.scaler.transform(x)
y, _ = model(x)
# y[:, :, self.reward_size:] += state, inplace operation leads to error
null = torch.zeros_like(y)
null[:, :, self.reward_size:] += state
y = y + null
return y.view(-1, self.state_size + self.reward_size, self.state_size + self.reward_size)
# reshape input
train_input_reg = train_input_reg.view(-1, self.state_size + self.action_size)
jacobian = get_batch_jacobian(func, train_input_reg, self.state_size + self.reward_size)
# reshape jacobian
return jacobian.view(
self.ensemble_size, -1, self.state_size + self.reward_size, self.state_size + self.action_size
)
def _train_gradient_model(self, inputs, labels, inputs_reg, labels_reg):
#split
num_holdout = int(inputs.shape[0] * self.holdout_ratio)
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:]
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout]
#normalize
# self.scaler.fit(train_inputs)
train_inputs = self.scaler.transform(train_inputs)
holdout_inputs = self.scaler.transform(holdout_inputs)
#repeat for ensemble
holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size)
holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size)
#no split and normalization on regulation data
train_inputs_reg, train_labels_reg = inputs_reg, labels_reg
neighbor_index = get_neighbor_index(train_inputs_reg, self.k, serial=self.serial_calc_nn)
neighbor_inputs = train_inputs_reg[neighbor_index] # [N, k, state_size+action_size]
neighbor_labels = train_labels_reg[neighbor_index] # [N, k, state_size+reward_size]
neighbor_inputs_distance = (neighbor_inputs - train_inputs_reg.unsqueeze(1)) # [N, k, state_size+action_size]
neighbor_labels_distance = (neighbor_labels - train_labels_reg.unsqueeze(1)) # [N, k, state_size+reward_size]
self._epochs_since_update = 0
self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)}
self._save_states()
for epoch in itertools.count():
train_idx = torch.stack([torch.randperm(train_inputs.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs.device)
train_idx_reg = torch.stack([torch.randperm(train_inputs_reg.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs_reg.device)
self.mse_loss = []
self.grad_loss = []
for start_pos in range(0, train_inputs.shape[0], self.batch_size):
idx = train_idx[:, start_pos:start_pos + self.batch_size]
train_input = train_inputs[idx]
train_label = train_labels[idx]
mean, logvar = self.gradient_model(train_input, ret_log_var=True)
loss, mse_loss = self.gradient_model.loss(mean, logvar, train_label)
# regulation loss
if start_pos % train_inputs_reg.shape[0] < (start_pos + self.batch_size) % train_inputs_reg.shape[0]:
idx_reg = train_idx_reg[:, start_pos % train_inputs_reg.shape[0]:(start_pos + self.batch_size) %
train_inputs_reg.shape[0]]
else:
idx_reg = train_idx_reg[:, 0:(start_pos + self.batch_size) % train_inputs_reg.shape[0]]
train_input_reg = train_inputs_reg[idx_reg]
neighbor_input_distance = neighbor_inputs_distance[idx_reg
] # [ensemble_size, B, k, state_size+action_size]
neighbor_label_distance = neighbor_labels_distance[idx_reg
] # [ensemble_size, B, k, state_size+reward_size]
jacobian = self._get_jacobian(self.gradient_model, train_input_reg).unsqueeze(2).repeat_interleave(
self.k, dim=2
) # [ensemble_size, B, k(repeat), state_size+reward_size, state_size+action_size]
directional_derivative = (jacobian @ neighbor_input_distance.unsqueeze(-1)).squeeze(
-1
) # [ensemble_size, B, k, state_size+reward_size]
loss_reg = torch.pow((neighbor_label_distance - directional_derivative),
2).sum(0).mean() # sumed over network
self.gradient_model.train(loss, loss_reg, self.reg)
self.mse_loss.append(mse_loss.mean().item())
self.grad_loss.append(loss_reg.item())
self.mse_loss = sum(self.mse_loss) / len(self.mse_loss)
self.grad_loss = sum(self.grad_loss) / len(self.grad_loss)
with torch.no_grad():
holdout_mean, holdout_logvar = self.gradient_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.gradient_model.loss(holdout_mean, holdout_logvar, holdout_labels)
self.curr_holdout_mse_loss = holdout_mse_loss.mean().item()
break_train = self._save_best(epoch, holdout_mse_loss)
if break_train:
break
self._load_states()
with torch.no_grad():
holdout_mean, holdout_logvar = self.gradient_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.gradient_model.loss(holdout_mean, holdout_logvar, holdout_labels)
sorted_loss, sorted_loss_idx = holdout_mse_loss.sort()
sorted_loss = sorted_loss.detach().cpu().numpy().tolist()
sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist()
self.elite_model_idxes_gradient_model = sorted_loss_idx[:self.elite_size]
self.top_holdout_mse_loss = sorted_loss[0]
self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2]
self.bottom_holdout_mse_loss = sorted_loss[-1]
self.best_holdout_mse_loss = holdout_mse_loss.mean().item()
return {
'gradient_model/mse_loss': self.mse_loss,
'gradient_model/grad_loss': self.grad_loss,
'gradient_model/curr_holdout_mse_loss': self.curr_holdout_mse_loss,
'gradient_model/best_holdout_mse_loss': self.best_holdout_mse_loss,
'gradient_model/top_holdout_mse_loss': self.top_holdout_mse_loss,
'gradient_model/middle_holdout_mse_loss': self.middle_holdout_mse_loss,
'gradient_model/bottom_holdout_mse_loss': self.bottom_holdout_mse_loss,
}
def _save_states(self, ):
self._states = copy.deepcopy(self.state_dict())
def _save_state(self, id):
state_dict = self.state_dict()
for k, v in state_dict.items():
if 'weight' in k or 'bias' in k:
self._states[k].data[id] = copy.deepcopy(v.data[id])
def _load_states(self):
self.load_state_dict(self._states)
def _save_best(self, epoch, holdout_losses):
updated = False
for i in range(len(holdout_losses)):
current = holdout_losses[i]
_, best = self._snapshots[i]
improvement = (best - current) / best
if improvement > 0.01:
self._snapshots[i] = (epoch, current)
self._save_state(i)
# self._save_state(i)
updated = True
# improvement = (best - current) / best
if updated:
self._epochs_since_update = 0
else:
self._epochs_since_update += 1
return self._epochs_since_update > self.max_epochs_since_update