gomoku / DI-engine /dizoo /league_demo /league_demo_collector.py
zjowowen's picture
init space
079c32c
raw
history blame
16.5 kB
from typing import Optional, Any, List, Tuple
from collections import namedtuple, deque
from easydict import EasyDict
import numpy as np
import torch
from ding.envs import BaseEnvManager
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, dicts_to_lists
from ding.torch_utils import to_tensor, to_ndarray
from ding.worker.collector.base_serial_collector import ISerialCollector, CachePool, TrajBuffer, INF, \
to_tensor_transitions
@SERIAL_COLLECTOR_REGISTRY.register('league_demo')
class LeagueDemoCollector(ISerialCollector):
"""
Overview:
League demo collector, derived from BattleEpisodeSerialCollector, add action probs viz.
Interfaces:
__init__, reset, reset_env, reset_policy, collect, close
Property:
envstep
"""
config = dict(deepcopy_obs=False, transform_obs=False, collect_print_freq=100, get_train_sample=False)
def __init__(
self,
cfg: EasyDict,
env: BaseEnvManager = None,
policy: List[namedtuple] = None,
tb_logger: 'SummaryWriter' = None, # noqa
exp_name: Optional[str] = 'default_experiment',
instance_name: Optional[str] = 'collector'
) -> None:
"""
Overview:
Initialization method.
Arguments:
- cfg (:obj:`EasyDict`): Config dict
- env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager)
- policy (:obj:`List[namedtuple]`): the api namedtuple of collect_mode policy
- tb_logger (:obj:`SummaryWriter`): tensorboard handle
"""
self._exp_name = exp_name
self._instance_name = instance_name
self._collect_print_freq = cfg.collect_print_freq
self._deepcopy_obs = cfg.deepcopy_obs
self._transform_obs = cfg.transform_obs
self._cfg = cfg
self._timer = EasyTimer()
self._end_flag = False
if tb_logger is not None:
self._logger, _ = build_logger(
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False
)
self._tb_logger = tb_logger
else:
self._logger, self._tb_logger = build_logger(
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name
)
self._traj_len = float("inf")
self.reset(policy, env)
def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None:
"""
Overview:
Reset the environment.
If _env is None, reset the old environment.
If _env is not None, replace the old environment in the collector with the new passed \
in environment and launch.
Arguments:
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
env_manager(BaseEnvManager)
"""
if _env is not None:
self._env = _env
self._env.launch()
self._env_num = self._env.env_num
else:
self._env.reset()
def reset_policy(self, _policy: Optional[List[namedtuple]] = None) -> None:
"""
Overview:
Reset the policy.
If _policy is None, reset the old policy.
If _policy is not None, replace the old policy in the collector with the new passed in policy.
Arguments:
- policy (:obj:`Optional[List[namedtuple]]`): the api namedtuple of collect_mode policy
"""
assert hasattr(self, '_env'), "please set env first"
if _policy is not None:
assert len(_policy) == 2, "1v1 episode collector needs 2 policy, but found {}".format(len(_policy))
self._policy = _policy
self._default_n_episode = _policy[0].get_attribute('cfg').collect.get('n_episode', None)
self._unroll_len = _policy[0].get_attribute('unroll_len')
self._on_policy = _policy[0].get_attribute('cfg').on_policy
self._traj_len = INF
self._logger.debug(
'Set default n_episode mode(n_episode({}), env_num({}), traj_len({}))'.format(
self._default_n_episode, self._env_num, self._traj_len
)
)
for p in self._policy:
p.reset()
def reset(self, _policy: Optional[List[namedtuple]] = None, _env: Optional[BaseEnvManager] = None) -> None:
"""
Overview:
Reset the environment and policy.
If _env is None, reset the old environment.
If _env is not None, replace the old environment in the collector with the new passed \
in environment and launch.
If _policy is None, reset the old policy.
If _policy is not None, replace the old policy in the collector with the new passed in policy.
Arguments:
- policy (:obj:`Optional[List[namedtuple]]`): the api namedtuple of collect_mode policy
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
env_manager(BaseEnvManager)
"""
if _env is not None:
self.reset_env(_env)
if _policy is not None:
self.reset_policy(_policy)
self._obs_pool = CachePool('obs', self._env_num, deepcopy=self._deepcopy_obs)
self._policy_output_pool = CachePool('policy_output', self._env_num)
# _traj_buffer is {env_id: {policy_id: TrajBuffer}}, is used to store traj_len pieces of transitions
self._traj_buffer = {
env_id: {policy_id: TrajBuffer(maxlen=self._traj_len)
for policy_id in range(2)}
for env_id in range(self._env_num)
}
self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)}
self._episode_info = []
self._total_envstep_count = 0
self._total_episode_count = 0
self._total_duration = 0
self._last_train_iter = 0
self._end_flag = False
def _reset_stat(self, env_id: int) -> None:
"""
Overview:
Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\
and env_info. Reset these states according to env_id. You can refer to base_serial_collector\
to get more messages.
Arguments:
- env_id (:obj:`int`): the id where we need to reset the collector's state
"""
for i in range(2):
self._traj_buffer[env_id][i].clear()
self._obs_pool.reset(env_id)
self._policy_output_pool.reset(env_id)
self._env_info[env_id] = {'time': 0., 'step': 0}
@property
def envstep(self) -> int:
"""
Overview:
Print the total envstep count.
Return:
- envstep (:obj:`int`): the total envstep count
"""
return self._total_envstep_count
def close(self) -> None:
"""
Overview:
Close the collector. If end_flag is False, close the environment, flush the tb_logger\
and close the tb_logger.
"""
if self._end_flag:
return
self._end_flag = True
self._env.close()
self._tb_logger.flush()
self._tb_logger.close()
def __del__(self) -> None:
"""
Overview:
Execute the close command and close the collector. __del__ is automatically called to \
destroy the collector instance when the collector finishes its work
"""
self.close()
def collect(self,
n_episode: Optional[int] = None,
train_iter: int = 0,
policy_kwargs: Optional[dict] = None) -> Tuple[List[Any], List[Any]]:
"""
Overview:
Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations
Arguments:
- n_episode (:obj:`int`): the number of collecting data episode
- train_iter (:obj:`int`): the number of training iteration
- policy_kwargs (:obj:`dict`): the keyword args for policy forward
Returns:
- return_data (:obj:`Tuple[List, List]`): A tuple with training sample(data) and episode info, \
the former is a list containing collected episodes if not get_train_sample, \
otherwise, return train_samples split by unroll_len.
"""
if n_episode is None:
if self._default_n_episode is None:
raise RuntimeError("Please specify collect n_episode")
else:
n_episode = self._default_n_episode
assert n_episode >= self._env_num, "Please make sure n_episode >= env_num"
if policy_kwargs is None:
policy_kwargs = {}
collected_episode = 0
return_data = [[] for _ in range(2)]
return_info = [[] for _ in range(2)]
ready_env_id = set()
remain_episode = n_episode
while True:
with self._timer:
# Get current env obs.
obs = self._env.ready_obs
new_available_env_id = set(obs.keys()).difference(ready_env_id)
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
remain_episode -= min(len(new_available_env_id), remain_episode)
obs = {env_id: obs[env_id] for env_id in ready_env_id}
# Policy forward.
self._obs_pool.update(obs)
if self._transform_obs:
obs = to_tensor(obs, dtype=torch.float32)
obs = dicts_to_lists(obs)
policy_output = [p.forward(obs[i], **policy_kwargs) for i, p in enumerate(self._policy)]
self._policy_output_pool.update(policy_output)
# Interact with env.
actions = {}
for env_id in ready_env_id:
actions[env_id] = []
for output in policy_output:
actions[env_id].append(output[env_id]['action'])
actions = to_ndarray(actions)
# temporally for viz
probs0 = torch.softmax(torch.stack([o['logit'] for o in policy_output[0].values()], 0), 1).mean(0)
probs1 = torch.softmax(torch.stack([o['logit'] for o in policy_output[1].values()], 0), 1).mean(0)
timesteps = self._env.step(actions)
# TODO(nyz) this duration may be inaccurate in async env
interaction_duration = self._timer.value / len(timesteps)
# TODO(nyz) vectorize this for loop
for env_id, timestep in timesteps.items():
self._env_info[env_id]['step'] += 1
self._total_envstep_count += 1
with self._timer:
for policy_id, policy in enumerate(self._policy):
policy_timestep_data = [d[policy_id] if not isinstance(d, bool) else d for d in timestep]
policy_timestep = type(timestep)(*policy_timestep_data)
transition = self._policy[policy_id].process_transition(
self._obs_pool[env_id][policy_id], self._policy_output_pool[env_id][policy_id],
policy_timestep
)
transition['collect_iter'] = train_iter
self._traj_buffer[env_id][policy_id].append(transition)
# prepare data
if timestep.done:
transitions = to_tensor_transitions(self._traj_buffer[env_id][policy_id])
if self._cfg.get_train_sample:
train_sample = self._policy[policy_id].get_train_sample(transitions)
return_data[policy_id].extend(train_sample)
else:
return_data[policy_id].append(transitions)
self._traj_buffer[env_id][policy_id].clear()
self._env_info[env_id]['time'] += self._timer.value + interaction_duration
# If env is done, record episode info and reset
if timestep.done:
self._total_episode_count += 1
info = {
'reward0': timestep.info[0]['eval_episode_return'],
'reward1': timestep.info[1]['eval_episode_return'],
'time': self._env_info[env_id]['time'],
'step': self._env_info[env_id]['step'],
'probs0': probs0,
'probs1': probs1,
}
collected_episode += 1
self._episode_info.append(info)
for i, p in enumerate(self._policy):
p.reset([env_id])
self._reset_stat(env_id)
ready_env_id.remove(env_id)
for policy_id in range(2):
return_info[policy_id].append(timestep.info[policy_id])
if collected_episode >= n_episode:
break
# log
self._output_log(train_iter)
return return_data, return_info
def _output_log(self, train_iter: int) -> None:
"""
Overview:
Print the output log information. You can refer to Docs/Best Practice/How to understand\
training generated folders/Serial mode/log/collector for more details.
Arguments:
- train_iter (:obj:`int`): the number of training iteration.
"""
if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0:
self._last_train_iter = train_iter
episode_count = len(self._episode_info)
envstep_count = sum([d['step'] for d in self._episode_info])
duration = sum([d['time'] for d in self._episode_info])
episode_return0 = [d['reward0'] for d in self._episode_info]
episode_return1 = [d['reward1'] for d in self._episode_info]
probs0 = [d['probs0'] for d in self._episode_info]
probs1 = [d['probs1'] for d in self._episode_info]
self._total_duration += duration
info = {
'episode_count': episode_count,
'envstep_count': envstep_count,
'avg_envstep_per_episode': envstep_count / episode_count,
'avg_envstep_per_sec': envstep_count / duration,
'avg_episode_per_sec': episode_count / duration,
'collect_time': duration,
'reward0_mean': np.mean(episode_return0),
'reward0_std': np.std(episode_return0),
'reward0_max': np.max(episode_return0),
'reward0_min': np.min(episode_return0),
'reward1_mean': np.mean(episode_return1),
'reward1_std': np.std(episode_return1),
'reward1_max': np.max(episode_return1),
'reward1_min': np.min(episode_return1),
'total_envstep_count': self._total_envstep_count,
'total_episode_count': self._total_episode_count,
'total_duration': self._total_duration,
}
info.update(
{
'probs0_select_action0': sum([p[0] for p in probs0]) / len(probs0),
'probs0_select_action1': sum([p[1] for p in probs0]) / len(probs0),
'probs1_select_action0': sum([p[0] for p in probs1]) / len(probs1),
'probs1_select_action1': sum([p[1] for p in probs1]) / len(probs1),
}
)
self._episode_info.clear()
self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()])))
for k, v in info.items():
self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter)
if k in ['total_envstep_count']:
continue
self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count)