|
from typing import Any, List, Union, Optional |
|
from easydict import EasyDict |
|
import time |
|
import gym |
|
import numpy as np |
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.envs.common.env_element import EnvElement, EnvElementInfo |
|
from ding.torch_utils import to_ndarray, to_list |
|
from ding.utils import ENV_REGISTRY, deep_merge_dicts |
|
|
|
|
|
@ENV_REGISTRY.register('procgen') |
|
class ProcgenEnv(BaseEnv): |
|
|
|
|
|
config = dict( |
|
control_level=True, |
|
start_level=0, |
|
num_levels=0, |
|
env_id='coinrun', |
|
) |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
cfg = deep_merge_dicts(EasyDict(self.config), cfg) |
|
self._cfg = cfg |
|
self._seed = 0 |
|
self._init_flag = False |
|
self._observation_space = gym.spaces.Box( |
|
low=np.zeros(shape=(3, 64, 64)), high=np.ones(shape=(3, 64, 64)) * 255, shape=(3, 64, 64), dtype=np.float32 |
|
) |
|
|
|
self._action_space = gym.spaces.Discrete(15) |
|
|
|
self._reward_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32) |
|
self._control_level = self._cfg.control_level |
|
self._start_level = self._cfg.start_level |
|
self._num_levels = self._cfg.num_levels |
|
self._env_name = 'procgen:procgen-' + self._cfg.env_id + '-v0' |
|
|
|
np.random.seed(0) |
|
|
|
def reset(self) -> np.ndarray: |
|
if not self._init_flag: |
|
if self._control_level: |
|
self._env = gym.make(self._env_name, start_level=self._start_level, num_levels=self._num_levels) |
|
else: |
|
self._env = gym.make(self._env_name, start_level=0, num_levels=1) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.close() |
|
if self._control_level: |
|
self._env = gym.make(self._env_name, start_level=self._start_level, num_levels=self._num_levels) |
|
else: |
|
self._env = gym.make(self._env_name, start_level=self._seed + np_seed, num_levels=1) |
|
elif hasattr(self, '_seed'): |
|
self._env.close() |
|
if self._control_level: |
|
self._env = gym.make(self._env_name, start_level=self._start_level, num_levels=self._num_levels) |
|
else: |
|
self._env = gym.make(self._env_name, start_level=self._seed, num_levels=1) |
|
self._eval_episode_return = 0 |
|
obs = self._env.reset() |
|
obs = to_ndarray(obs) |
|
obs = np.transpose(obs, (2, 0, 1)) |
|
obs = obs.astype(np.float32) |
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
assert isinstance(action, np.ndarray), type(action) |
|
if action.shape == (1, ): |
|
action = action.squeeze() |
|
obs, rew, done, info = self._env.step(action) |
|
self._eval_episode_return += rew |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
obs = to_ndarray(obs) |
|
obs = np.transpose(obs, (2, 0, 1)) |
|
obs = obs.astype(np.float32) |
|
rew = to_ndarray([rew]) |
|
rew = rew.astype(np.float32) |
|
return BaseEnvTimestep(obs, rew, bool(done), info) |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine CoinRun Env" |
|
|
|
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: |
|
if replay_path is None: |
|
replay_path = './video' |
|
self._replay_path = replay_path |
|
self._env = gym.wrappers.Monitor( |
|
self._env, self._replay_path, video_callable=lambda episode_id: True, force=True |
|
) |
|
|