zjowowen's picture
init space
079c32c
raw
history blame
4.49 kB
from typing import Any, List, Union, Optional
from easydict import EasyDict
import time
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.envs.common.env_element import EnvElement, EnvElementInfo
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY, deep_merge_dicts
@ENV_REGISTRY.register('procgen')
class ProcgenEnv(BaseEnv):
#If control_level is True, you can control the specific level of the generated environment by controlling start_level and num_level.
config = dict(
control_level=True,
start_level=0,
num_levels=0,
env_id='coinrun',
)
def __init__(self, cfg: dict) -> None:
cfg = deep_merge_dicts(EasyDict(self.config), cfg)
self._cfg = cfg
self._seed = 0
self._init_flag = False
self._observation_space = gym.spaces.Box(
low=np.zeros(shape=(3, 64, 64)), high=np.ones(shape=(3, 64, 64)) * 255, shape=(3, 64, 64), dtype=np.float32
)
self._action_space = gym.spaces.Discrete(15)
self._reward_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32)
self._control_level = self._cfg.control_level
self._start_level = self._cfg.start_level
self._num_levels = self._cfg.num_levels
self._env_name = 'procgen:procgen-' + self._cfg.env_id + '-v0'
# In procgen envs, we use seed to control level, and fix the numpy seed to 0
np.random.seed(0)
def reset(self) -> np.ndarray:
if not self._init_flag:
if self._control_level:
self._env = gym.make(self._env_name, start_level=self._start_level, num_levels=self._num_levels)
else:
self._env = gym.make(self._env_name, start_level=0, num_levels=1)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.close()
if self._control_level:
self._env = gym.make(self._env_name, start_level=self._start_level, num_levels=self._num_levels)
else:
self._env = gym.make(self._env_name, start_level=self._seed + np_seed, num_levels=1)
elif hasattr(self, '_seed'):
self._env.close()
if self._control_level:
self._env = gym.make(self._env_name, start_level=self._start_level, num_levels=self._num_levels)
else:
self._env = gym.make(self._env_name, start_level=self._seed, num_levels=1)
self._eval_episode_return = 0
obs = self._env.reset()
obs = to_ndarray(obs)
obs = np.transpose(obs, (2, 0, 1))
obs = obs.astype(np.float32)
return obs
def close(self) -> None:
if self._init_flag:
self._env.close()
self._init_flag = False
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
def step(self, action: np.ndarray) -> BaseEnvTimestep:
assert isinstance(action, np.ndarray), type(action)
if action.shape == (1, ):
action = action.squeeze() # 0-dim array
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
if done:
info['eval_episode_return'] = self._eval_episode_return
obs = to_ndarray(obs)
obs = np.transpose(obs, (2, 0, 1))
obs = obs.astype(np.float32)
rew = to_ndarray([rew]) # wrapped to be transfered to a array with shape (1,)
rew = rew.astype(np.float32)
return BaseEnvTimestep(obs, rew, bool(done), info)
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
def __repr__(self) -> str:
return "DI-engine CoinRun Env"
def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
if replay_path is None:
replay_path = './video'
self._replay_path = replay_path
self._env = gym.wrappers.Monitor(
self._env, self._replay_path, video_callable=lambda episode_id: True, force=True
)