|
from ding.entry import serial_pipeline |
|
from easydict import EasyDict |
|
|
|
agent_num = 8 |
|
collector_env_num = 4 |
|
evaluator_env_num = 8 |
|
|
|
main_config = dict( |
|
exp_name='smac_3s5zvs3s6z_madqn_seed0', |
|
env=dict( |
|
map_name='3s5z_vs_3s6z', |
|
difficulty=7, |
|
reward_only_positive=True, |
|
mirror_opponent=False, |
|
agent_num=agent_num, |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
stop_value=0.999, |
|
n_evaluator_episode=32, |
|
special_global_state=True, |
|
manager=dict(shared_memory=False, ), |
|
), |
|
policy=dict( |
|
nstep=3, |
|
model=dict( |
|
agent_num=agent_num, |
|
obs_shape=159, |
|
global_obs_shape=314, |
|
global_cooperation=True, |
|
action_shape=15, |
|
hidden_size_list=[256, 256], |
|
), |
|
learn=dict( |
|
update_per_collect=40, |
|
batch_size=32, |
|
learning_rate=0.0005, |
|
clip_value=5, |
|
target_update_theta=0.008, |
|
discount_factor=0.95, |
|
), |
|
collect=dict( |
|
collector=dict(get_train_sample=True, ), |
|
n_episode=32, |
|
unroll_len=10, |
|
env_num=collector_env_num, |
|
), |
|
eval=dict(env_num=evaluator_env_num, evaluator=dict(eval_freq=1000, )), |
|
other=dict( |
|
eps=dict( |
|
type='linear', |
|
start=1, |
|
end=0.05, |
|
decay=100000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=30000, ), |
|
), |
|
), |
|
) |
|
main_config = EasyDict(main_config) |
|
create_config = dict( |
|
env=dict( |
|
type='smac', |
|
import_names=['dizoo.smac.envs.smac_env'], |
|
), |
|
env_manager=dict(type='base'), |
|
policy=dict(type='madqn'), |
|
collector=dict(type='episode'), |
|
) |
|
create_config = EasyDict(create_config) |
|
|
|
|
|
def train(args): |
|
config = [main_config, create_config] |
|
serial_pipeline(config, seed=args.seed, max_env_step=1e7) |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--seed', '-s', type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
train(args) |
|
|