from copy import deepcopy from easydict import EasyDict enduro_impala_config = dict( exp_name='enduro_impala_seed0', env=dict( collector_env_num=16, evaluator_env_num=8, n_evaluator_episode=8, stop_value=10000000000, env_id='EnduroNoFrameskip-v4', #'ALE/Enduro-v5' is available. But special setting is needed after gym make. frame_stack=4 ), policy=dict( cuda=True, # (int) the trajectory length to calculate v-trace target unroll_len=64, model=dict( obs_shape=[4, 84, 84], action_shape=9, encoder_hidden_size_list=[128, 128, 512], critic_head_hidden_size=512, critic_head_layer_num=2, actor_head_hidden_size=512, actor_head_layer_num=2, ), learn=dict( # (int) collect n_sample data, train model update_per_collect times # here we follow ppo serial pipeline update_per_collect=10, # (int) the number of data for a train iteration batch_size=128, grad_clip_type='clip_norm', clip_value=10.0, learning_rate=0.0001, # (float) loss weight of the value network, the weight of policy network is set to 1 value_weight=1.0, # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 entropy_weight=0.0000001, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.99, # (float) additional discounting parameter lambda_=1.0, # (float) clip ratio of importance weights rho_clip_ratio=1.0, # (float) clip ratio of importance weights c_clip_ratio=1.0, # (float) clip ratio of importance sampling rho_pg_clip_ratio=1.0, ), collect=dict( # (int) collect n_sample data, train model n_iteration times n_sample=16, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.99, gae_lambda=0.95, collector=dict(collect_print_freq=1000, ), ), eval=dict(evaluator=dict(eval_freq=5000, )), other=dict(replay_buffer=dict( type='naive', replay_buffer_size=500000, max_use=100, ), ), ), ) main_config = EasyDict(enduro_impala_config) enduro_impala_create_config = dict( env=dict( type='atari', import_names=['dizoo.atari.envs.atari_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='impala'), ) create_config = EasyDict(enduro_impala_create_config) if __name__ == '__main__': # or you can enter ding -m serial -c enduro_impala_config.py -s 0 from ding.entry import serial_pipeline serial_pipeline((main_config, create_config), seed=0)