from easydict import EasyDict collector_env_num = 8 evaluator_env_num = 8 nstep = 5 max_env_step = int(10e6) montezuma_ngu_config = dict( exp_name='montezuma_ngu_seed0', env=dict( collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=8, env_id='MontezumaRevengeNoFrameskip-v4', #'ALE/MontezumaRevenge-v5' is available. But special setting is needed after gym make. obs_plus_prev_action_reward=True, # use specific env wrapper for ngu policy stop_value=int(1e5), frame_stack=4, ), rnd_reward_model=dict( intrinsic_reward_type='add', learning_rate=0.001, obs_shape=[4, 84, 84], action_shape=18, batch_size=320, update_per_collect=10, only_use_last_five_frames_for_icm_rnd=False, clear_buffer_per_iters=10, nstep=nstep, hidden_size_list=[128, 128, 64], type='rnd-ngu', ), episodic_reward_model=dict( # means if using rescale trick to the last non-zero reward # when combing extrinsic and intrinsic reward. # the rescale trick only used in: # 1. sparse reward env minigrid, in which the last non-zero reward is a strong positive signal # 2. the last reward of each episode directly reflects the agent's completion of the task, e.g. lunarlander # Note that the ngu intrinsic reward is a positive value (max value is 5), in these envs, # the last non-zero reward should not be overwhelmed by intrinsic rewards, so we need rescale the # original last nonzero extrinsic reward. # please refer to ngu_reward_model for details. last_nonzero_reward_rescale=False, # means the rescale value for the last non-zero reward, only used when last_nonzero_reward_rescale is True # please refer to ngu_reward_model for details. last_nonzero_reward_weight=1, intrinsic_reward_type='add', learning_rate=0.001, obs_shape=[4, 84, 84], action_shape=18, batch_size=320, update_per_collect=10, # 32*100/64=50 only_use_last_five_frames_for_icm_rnd=False, clear_buffer_per_iters=10, nstep=nstep, hidden_size_list=[128, 128, 64], type='episodic', ), policy=dict( cuda=True, on_policy=False, priority=True, priority_IS_weight=True, discount_factor=0.997, nstep=nstep, burnin_step=20, # (int) is the total length of [sequence sample] minus # the length of burnin part in [sequence sample], # i.e., = = + learn_unroll_len=80, # set this key according to the episode length model=dict( obs_shape=[4, 84, 84], action_shape=18, encoder_hidden_size_list=[128, 128, 512], collector_env_num=collector_env_num, ), learn=dict( update_per_collect=8, batch_size=64, learning_rate=0.0005, target_update_theta=0.001, ), collect=dict( # NOTE: It is important that set key traj_len_inf=True here, # to make sure self._traj_len=INF in serial_sample_collector.py. # In sequence-based policy, for each collect_env, # we want to collect data of length self._traj_len=INF # unless the episode enters the 'done' state. # In each collect phase, we collect a total of sequence samples. n_sample=32, traj_len_inf=True, env_num=collector_env_num, ), eval=dict(env_num=evaluator_env_num, ), other=dict( eps=dict( type='exp', start=0.95, end=0.05, decay=1e5, ), replay_buffer=dict( replay_buffer_size=int(2e3), # (Float type) How much prioritization is used: 0 means no prioritization while 1 means full prioritization alpha=0.6, # (Float type) How much correction is used: 0 means no correction while 1 means full correction beta=0.4, ) ), ), ) montezuma_ngu_config = EasyDict(montezuma_ngu_config) main_config = montezuma_ngu_config montezuma_ngu_create_config = dict( env=dict( type='atari', import_names=['dizoo.atari.envs.atari_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='ngu'), rnd_reward_model=dict(type='rnd-ngu'), episodic_reward_model=dict(type='episodic'), ) montezuma_ngu_create_config = EasyDict(montezuma_ngu_create_config) create_config = montezuma_ngu_create_config if __name__ == "__main__": from ding.entry import serial_pipeline_reward_model_ngu serial_pipeline_reward_model_ngu([main_config, create_config], seed=0, max_env_step=max_env_step)