import os import torch from tensorboardX import SummaryWriter from ding.config import compile_config from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer from ding.policy import FQFPolicy from ding.model import FQF from ding.utils import set_pkg_seed from ding.rl_utils import get_epsilon_greedy_fn from dizoo.atari.config.serial.qbert.qbert_fqf_config import qbert_fqf_config, create_config from ding.utils import DistContext from functools import partial from ding.envs import get_vec_env_setting, create_env_manager def main(cfg, create_cfg, seed=0): cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True) # Create main components: env, policy env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) # Set random seed for all package and instance collector_env.seed(seed) evaluator_env.seed(seed, dynamic_seed=False) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) # Set up RL Policy model = FQF(**cfg.policy.model) policy = FQFPolicy(cfg.policy, model=model) # Set up collection, training and evaluation utilities tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = SampleSerialCollector( cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) replay_buffer = AdvancedReplayBuffer(cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name) # Set up other modules, etc. epsilon greedy eps_cfg = cfg.policy.other.eps epsilon_greedy = get_epsilon_greedy_fn(eps_cfg.start, eps_cfg.end, eps_cfg.decay, eps_cfg.type) # Training & Evaluation loop while True: # Evaluating at the beginning and with specific frequency if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break # Update other modules eps = epsilon_greedy(collector.envstep) # Sampling data from environments new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs={'eps': eps}) replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) # Training for i in range(cfg.policy.learn.update_per_collect): train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) if train_data is None: break learner.train(train_data, collector.envstep) if collector.envstep >= 10000000: break if __name__ == "__main__": # with DistContext(): main(qbert_fqf_config, create_config)