from typing import Any, List, Union, Sequence, Optional import copy import numpy as np import gym from ding.envs import BaseEnv, BaseEnvTimestep, update_shape from ding.utils import ENV_REGISTRY from ding.torch_utils import to_tensor, to_ndarray, to_list from .atari_wrappers import wrap_deepmind, wrap_deepmind_mr from ding.envs import ObsPlusPrevActRewWrapper @ENV_REGISTRY.register("atari") class AtariEnv(BaseEnv): def __init__(self, cfg: dict) -> None: self._cfg = cfg self._init_flag = False self._replay_path = None def reset(self) -> np.ndarray: if not self._init_flag: self._env = self._make_env() if self._replay_path is not None: self._env = gym.wrappers.RecordVideo( self._env, video_folder=self._replay_path, episode_trigger=lambda episode_id: True, name_prefix='rl-video-{}'.format(id(self)) ) if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: self._env = ObsPlusPrevActRewWrapper(self._env) self._observation_space = self._env.observation_space self._action_space = self._env.action_space self._reward_space = gym.spaces.Box( low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 ) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) obs = self._env.reset() obs = to_ndarray(obs) self._eval_episode_return = 0. return obs def close(self) -> None: if self._init_flag: self._env.close() self._init_flag = False def seed(self, seed: int, dynamic_seed: bool = True) -> None: self._seed = seed self._dynamic_seed = dynamic_seed np.random.seed(self._seed) def step(self, action: np.ndarray) -> BaseEnvTimestep: assert isinstance(action, np.ndarray), type(action) action = action.item() obs, rew, done, info = self._env.step(action) # self._env.render() self._eval_episode_return += rew obs = to_ndarray(obs) rew = to_ndarray([rew]).astype(np.float32) # wrapped to be transferred to a Tensor with shape (1,) if done: info['eval_episode_return'] = self._eval_episode_return return BaseEnvTimestep(obs, rew, done, info) def enable_save_replay(self, replay_path: Optional[str] = None) -> None: if replay_path is None: replay_path = './video' self._replay_path = replay_path def random_action(self) -> np.ndarray: random_action = self.action_space.sample() random_action = to_ndarray([random_action], dtype=np.int64) return random_action @property def observation_space(self) -> gym.spaces.Space: return self._observation_space @property def action_space(self) -> gym.spaces.Space: return self._action_space @property def reward_space(self) -> gym.spaces.Space: return self._reward_space def _make_env(self): return wrap_deepmind( self._cfg.env_id, frame_stack=self._cfg.frame_stack, episode_life=self._cfg.is_train, clip_rewards=self._cfg.is_train ) def __repr__(self) -> str: return "DI-engine Atari Env({})".format(self._cfg.env_id) @staticmethod def create_collector_env_cfg(cfg: dict) -> List[dict]: collector_env_num = cfg.pop('collector_env_num') cfg = copy.deepcopy(cfg) cfg.is_train = True return [cfg for _ in range(collector_env_num)] @staticmethod def create_evaluator_env_cfg(cfg: dict) -> List[dict]: evaluator_env_num = cfg.pop('evaluator_env_num') cfg = copy.deepcopy(cfg) cfg.is_train = False return [cfg for _ in range(evaluator_env_num)] @ENV_REGISTRY.register('atari_mr') class AtariEnvMR(AtariEnv): def reset(self) -> np.ndarray: if not self._init_flag: self._env = self._make_env() self._observation_space = self._env.observation_space self._action_space = self._env.action_space self._reward_space = gym.spaces.Box( low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 ) self._init_flag = True if hasattr(self, '_seed'): np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) obs = self._env.reset() obs = to_ndarray(obs) self._eval_episode_return = 0. return obs def _make_env(self): return wrap_deepmind_mr( self._cfg.env_id, frame_stack=self._cfg.frame_stack, episode_life=self._cfg.is_train, clip_rewards=self._cfg.is_train )