from copy import deepcopy from ditk import logging from ding.model import DQN from ding.policy import DQNPolicy from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2 from ding.data import DequeBuffer from ding.config import compile_config from ding.framework import task, ding_init from ding.framework.context import OnlineRLContext from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ eps_greedy_handler, CkptSaver, context_exchanger, model_exchanger, termination_checker, nstep_reward_enhancer, \ online_logger from ding.utils import set_pkg_seed from dizoo.atari.envs.atari_env import AtariEnv from dizoo.atari.config.serial.pong.pong_dqn_config import main_config, create_config logging.getLogger().setLevel(logging.INFO) main_config.exp_name = 'pong_dqn_seed0_ditask_dist_ddp' def learner(): cfg = compile_config(main_config, create_cfg=create_config, auto=True) ding_init(cfg) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) policy = DQNPolicy(cfg.policy, model=model, enable_field=['learn']) buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) with task.start(async_mode=False, ctx=OnlineRLContext()): assert task.router.is_active, "Please execute this script with ditask! See note in the header." logging.info("Learner running on node {}".format(task.router.node_id)) from ding.utils import DistContext, get_rank with DistContext(): rank = get_rank() task.use( context_exchanger( send_keys=["train_iter"], recv_keys=["trajectories", "episodes", "env_step", "env_episode"], skip_n_iter=0 ) ) task.use(model_exchanger(model, is_learner=True)) task.use(nstep_reward_enhancer(cfg)) task.use(data_pusher(cfg, buffer_)) task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) if rank == 0: task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000)) task.run() def collector(): cfg = compile_config(main_config, create_cfg=create_config, auto=True) ding_init(cfg) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) policy = DQNPolicy(cfg.policy, model=model, enable_field=['collect']) collector_cfg = deepcopy(cfg.env) collector_cfg.is_train = True collector_env = SubprocessEnvManagerV2( env_fn=[lambda: AtariEnv(collector_cfg) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager ) with task.start(async_mode=False, ctx=OnlineRLContext()): assert task.router.is_active, "Please execute this script with ditask! See note in the header." logging.info("Collector running on node {}".format(task.router.node_id)) task.use( context_exchanger( send_keys=["trajectories", "episodes", "env_step", "env_episode"], recv_keys=["train_iter"], skip_n_iter=1 ) ) task.use(model_exchanger(model, is_learner=False)) task.use(eps_greedy_handler(cfg)) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(termination_checker(max_env_step=int(1e7))) task.run() def evaluator(): cfg = compile_config(main_config, create_cfg=create_config, auto=True) ding_init(cfg) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) policy = DQNPolicy(cfg.policy, model=model, enable_field=['eval']) evaluator_cfg = deepcopy(cfg.env) evaluator_cfg.is_train = False evaluator_env = SubprocessEnvManagerV2( env_fn=[lambda: AtariEnv(evaluator_cfg) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager ) with task.start(async_mode=False, ctx=OnlineRLContext()): assert task.router.is_active, "Please execute this script with ditask! See note in the header." logging.info("Evaluator running on node {}".format(task.router.node_id)) task.use(context_exchanger(recv_keys=["train_iter", "env_step"], skip_n_iter=1)) task.use(model_exchanger(model, is_learner=False)) task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use(CkptSaver(policy, cfg.exp_name, save_finish=False)) task.use(online_logger(record_train_iter=True)) task.run()