import os import gym import gym_hybrid from tensorboardX import SummaryWriter from ding.config import compile_config from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer from ding.envs import BaseEnvManager from ding.policy import DDPGPolicy from ding.model import ContinuousQAC from ding.utils import set_pkg_seed from ding.rl_utils import get_epsilon_greedy_fn from dizoo.gym_hybrid.envs.gym_hybrid_env import GymHybridEnv from dizoo.gym_hybrid.config.gym_hybrid_ddpg_config import gym_hybrid_ddpg_config def main(cfg, seed=0): cfg = compile_config( cfg, BaseEnvManager, DDPGPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer, save_cfg=True ) # Set up envs for collection and evaluation collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num # You can either use `PendulumEnv` or `DingEnvWrapper` to make a pendulum env and therefore an env manager. # == Use `DingEnvWrapper` collector_env = BaseEnvManager( env_fn=[lambda: GymHybridEnv(cfg=cfg.env) for _ in range(collector_env_num)], cfg=cfg.env.manager ) evaluator_env = BaseEnvManager( env_fn=[lambda: GymHybridEnv(cfg=cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager ) # Set random seed for all package and instance collector_env.seed(seed) evaluator_env.seed(seed, dynamic_seed=False) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) # Set up RL Policy model = ContinuousQAC(**cfg.policy.model) policy = DDPGPolicy(cfg.policy, model=model) # Set up collection, training and evaluation utilities tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = SampleSerialCollector( cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) replay_buffer = AdvancedReplayBuffer(cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name) # Set up other modules, etc. epsilon greedy eps_cfg = cfg.policy.other.eps epsilon_greedy = get_epsilon_greedy_fn(eps_cfg.start, eps_cfg.end, eps_cfg.decay, eps_cfg.type) # Training & Evaluation loop while True: # Evaluate at the beginning and with specific frequency if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break # Update other modules eps = epsilon_greedy(collector.envstep) # Collect data from environments new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs={'eps': eps}) replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) # Train for i in range(cfg.policy.learn.update_per_collect): train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) if train_data is None: break learner.train(train_data, collector.envstep) # evaluate evaluator_env = BaseEnvManager( env_fn=[lambda: GymHybridEnv(cfg=cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager ) evaluator_env.enable_save_replay(cfg.env.replay_path) # switch save replay interface evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if __name__ == "__main__": main(gym_hybrid_ddpg_config, seed=0)