import os import gym import torch from tensorboardX import SummaryWriter from easydict import EasyDict from ding.config import compile_config from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, NaiveReplayBuffer from ding.envs import BaseEnvManager, DingEnvWrapper from ding.policy import PPOPolicy from ding.model import VAC from ding.utils import set_pkg_seed from dizoo.gym_pybullet_drones.envs.gym_pybullet_drones_env import GymPybulletDronesEnv from dizoo.gym_pybullet_drones.config.flythrugate_onppo_config import flythrugate_ppo_config def main(cfg, seed=0, max_iterations=int(1e10)): cfg = compile_config( cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, NaiveReplayBuffer, save_cfg=True ) collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num info = cfg.env.manager cfg.env['record'] = True cfg.env['gui'] = True cfg.env['print_debug_info'] = True cfg.env['plot_observation'] = True evaluator_env = BaseEnvManager( env_fn=[lambda: GymPybulletDronesEnv(cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager ) evaluator_env.seed(seed, dynamic_seed=False) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) model = VAC(**cfg.policy.model) policy = PPOPolicy(cfg.policy, model=model) policy.eval_mode.load_state_dict(torch.load(cfg.policy.load_path, map_location='cpu')) tb_logger = SummaryWriter(os.path.join('./log/', 'serial')) evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger) evaluator.eval() if __name__ == "__main__": main(flythrugate_ppo_config)