import gym from ditk import logging from ding.model import DQN from ding.policy import DQNPolicy from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2 from ding.envs.env_wrappers import MaxAndSkipWrapper, WarpFrameWrapper, ScaledFloatFrameWrapper, FrameStackWrapper, \ EvalEpisodeReturnWrapper, TimeLimitWrapper from ding.data import DequeBuffer from ding.config import compile_config from ding.framework import task from ding.framework.context import OnlineRLContext from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ eps_greedy_handler, CkptSaver, nstep_reward_enhancer from ding.utils import set_pkg_seed from mario_dqn_config import main_config, create_config import gym_super_mario_bros from nes_py.wrappers import JoypadSpace def wrapped_mario_env(): return DingEnvWrapper( JoypadSpace(gym_super_mario_bros.make("SuperMarioBros-1-1-v0"), [["right"], ["right", "A"]]), cfg={ 'env_wrapper': [ lambda env: MaxAndSkipWrapper(env, skip=4), lambda env: WarpFrameWrapper(env, size=84), lambda env: ScaledFloatFrameWrapper(env), lambda env: FrameStackWrapper(env, n_frames=4), lambda env: TimeLimitWrapper(env, max_limit=400), lambda env: EvalEpisodeReturnWrapper(env), ] } ) def main(): filename = '{}/log.txt'.format(main_config.exp_name) logging.getLogger(with_files=[filename]).setLevel(logging.INFO) cfg = compile_config(main_config, create_cfg=create_config, auto=True) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num collector_env = SubprocessEnvManagerV2( env_fn=[wrapped_mario_env for _ in range(collector_env_num)], cfg=cfg.env.manager ) evaluator_env = SubprocessEnvManagerV2( env_fn=[wrapped_mario_env for _ in range(evaluator_env_num)], cfg=cfg.env.manager ) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) policy = DQNPolicy(cfg.policy, model=model) task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use(eps_greedy_handler(cfg)) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(nstep_reward_enhancer(cfg)) task.use(data_pusher(cfg, buffer_)) task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000)) task.run() if __name__ == "__main__": main()